5cpv Citations

Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution.

J Biol Chem 264 16620-8 (1989)
Cited: 59 times
EuropePMC logo PMID: 2777802

Abstract

Carp parvalbumin coordinates calcium through one carbonyl oxygen atom and the oxygen-containing side chains of 5 amino acid residues, or 4 residues and a water molecule, in a helix-loop-helix structural motif. Other calcium-binding proteins, including calmodulin and troponin C, also possess this unique calcium-binding design, which is designated EF-hand or calmodulin fold. Parvalbumin has two such sites, labeled CD and EF. Each of the calcium-binding sites of refined structures of proteins belonging to this group has a 7-oxygen coordination sphere except those of the structure of parvalbumin as it was reported in 1975. This structure had been refined at 1.9 A using difference Fourier techniques on film data. The CD site appeared to be 6-coordinate and the EF site 8-coordinate. Results of NMR experiments using 113Cd-substituted parvalbumin, however, indicate that the sites are similar to one another with coordination number greater than 6. To resolve the inconsistency between crystallographic and NMR results, 1.6 A area detector data was collected for native and cadmium-substituted parvalbumin; the structures have been refined to R factors of 18.7% and 16.4%, respectively, with acceptable geometry and low errors in atomic coordinates. Differences between the parvalbumin structure described in 1975 and the present structure are addressed, including the discovery of 7-coordination for both the CD and EF sites.

Reviews - 5cpv mentioned but not cited (2)

  1. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Jing Z, Liu C, Cheng SY, Qi R, Walker BD, Piquemal JP, Ren P. Annu Rev Biophys 48 371-394 (2019)
  2. Structure of allergens and structure based epitope predictions. Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Methods 66 3-21 (2014)

Articles - 5cpv mentioned but not cited (7)

  1. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX, Murphy RB, Zhou R, Halgren TA. J Comput Chem 23 1515-1531 (2002)
  2. Many-body effect determines the selectivity for Ca2+ and Mg2+ in proteins. Jing Z, Liu C, Qi R, Ren P. Proc Natl Acad Sci U S A 115 E7495-E7501 (2018)
  3. Interfaces between allergen structure and diagnosis: know your epitopes. Pomés A, Chruszcz M, Gustchina A, Wlodawer A. Curr Allergy Asthma Rep 15 506 (2015)
  4. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field. Jing Z, Qi R, Liu C, Ren P. J Chem Phys 147 161733 (2017)
  5. Structure of avian thymic hormone, a high-affinity avian beta-parvalbumin, in the Ca2+-free and Ca2+-bound states. Schuermann JP, Tan A, Tanner JJ, Henzl MT. J. Mol. Biol. 397 991-1002 (2010)
  6. Local functional descriptors for surface comparison based binding prediction. Cipriano GM, Phillips GN, Gleicher M. BMC Bioinformatics 13 314 (2012)
  7. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)


Reviews citing this publication (4)

  1. Molecular tuning of ion binding to calcium signaling proteins. Falke JJ, Drake SK, Hazard AL, Peersen OB. Q. Rev. Biophys. 27 219-290 (1994)
  2. Cytosolic Ca2+ buffers. Schwaller B. Cold Spring Harb Perspect Biol 2 a004051 (2010)
  3. Cytosolic Ca2+ Buffers Are Inherently Ca2+ Signal Modulators. Schwaller B. Cold Spring Harb Perspect Biol 12 a035543 (2020)
  4. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview. Armitage IM, Drakenberg T, Reilly B. Met Ions Life Sci 11 117-144 (2013)

Articles citing this publication (46)

  1. Hydrophilicity of cavities in proteins. Zhang L, Hermans J. Proteins 24 433-438 (1996)
  2. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Gagné SM, Tsuda S, Li MX, Smillie LB, Sykes BD. Nat. Struct. Biol. 2 784-789 (1995)
  3. Crystal structure of the endophilin-A1 BAR domain. Weissenhorn W. J. Mol. Biol. 351 653-661 (2005)
  4. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J. Mol. Biol. 326 955-978 (2003)
  5. Structural analysis, identification, and design of calcium-binding sites in proteins. Yang W, Lee HW, Hellinga H, Yang JJ. Proteins 47 344-356 (2002)
  6. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. Declercq JP, Tinant B, Parello J, Rambaud J. J. Mol. Biol. 220 1017-1039 (1991)
  7. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. Structure 6 233-241 (1998)
  8. Identification and characterization of subfamily-specific signatures in a large protein superfamily by a hidden Markov model approach. Truong K, Ikura M. BMC Bioinformatics 3 1 (2002)
  9. Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution. Rao ST, Wu S, Satyshur KA, Ling KY, Kung C, Sundaralingam M. Protein Sci. 2 436-447 (1993)
  10. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW. Structure 7 1167-1180 (1999)
  11. Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN. Structure 7 1269-1278 (1999)
  12. Molecular mechanisms of calcium and magnesium binding to parvalbumin. Cates MS, Teodoro ML, Phillips GN. Biophys. J. 82 1133-1146 (2002)
  13. Nuclear magnetic resonance studies of the internal dynamics in Apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. The rates of amide proton exchange with solvent. Skelton NJ, Kördel J, Akke M, Chazin WJ. J. Mol. Biol. 227 1100-1117 (1992)
  14. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin. Roquet F, Declercq JP, Tinant B, Rambaud J, Parello J. J. Mol. Biol. 223 705-720 (1992)
  15. Thermodynamics of the temperature-induced unfolding of globular proteins. Khechinashvili NN, Janin J, Rodier F. Protein Sci. 4 1315-1324 (1995)
  16. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k. Akke M, Forsén S, Chazin WJ. J. Mol. Biol. 220 173-189 (1991)
  17. Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+. Ahmed FR, Przybylska M, Rose DR, Birnbaum GI, Pippy ME, MacManus JP. J. Mol. Biol. 216 127-140 (1990)
  18. Estimation of parvalbumin Ca(2+)- and Mg(2+)-binding constants by global least-squares analysis of isothermal titration calorimetry data. Henzl MT, Larson JD, Agah S. Anal. Biochem. 319 216-233 (2003)
  19. Structural differences between Pb2+- and Ca2+-binding sites in proteins: implications with respect to toxicity. Kirberger M, Yang JJ. J. Inorg. Biochem. 102 1901-1909 (2008)
  20. Clustering of protein structural fragments reveals modular building block approach of nature. Tendulkar AV, Joshi AA, Sohoni MA, Wangikar PP. J. Mol. Biol. 338 611-629 (2004)
  21. Characterization of the calcium-binding sites of calcineurin B. Kakalis LT, Kennedy M, Sikkink R, Rusnak F, Armitage IM. FEBS Lett. 362 55-58 (1995)
  22. Statistical analysis of structural characteristics of protein Ca2+-binding sites. Kirberger M, Wang X, Deng H, Yang W, Chen G, Yang JJ. J. Biol. Inorg. Chem. 13 1169-1181 (2008)
  23. Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 A) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core. Declercq JP, Evrard C, Lamzin V, Parello J. Protein Sci. 8 2194-2204 (1999)
  24. Binding of calcium in the EF-hand of Escherichia coli lytic transglycosylase Slt35 is important for stability. van Asselt EJ, Dijkstra BW. FEBS Lett. 458 429-435 (1999)
  25. Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from Arabidopsis. Khan AR, Johnson KA, Braam J, James MN. Proteins 27 144-153 (1997)
  26. Structure of oxalacetate acetylhydrolase, a virulence factor of the chestnut blight fungus. Chen C, Sun Q, Narayanan B, Nuss DL, Herzberg O. J. Biol. Chem. 285 26685-26696 (2010)
  27. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics. Moncrieffe MC, Juranic N, Kemple MD, Potter JD, Macura S, Prendergast FG. J. Mol. Biol. 297 147-163 (2000)
  28. Improved calculations of compactness and a reevaluation of continuous compact units. Zehfus MH. Proteins 16 293-300 (1993)
  29. Relative stabilities of synthetic peptide homo- and heterodimeric troponin-C domains. Shaw GS, Hodges RS, Kay CM, Sykes BD. Protein Sci. 3 1010-1019 (1994)
  30. X-Ray crystal structure and molecular dynamics simulations of silver hake parvalbumin (Isoform B). Richardson RC, King NM, Harrington DJ, Sun H, Royer WE, Nelson DJ. Protein Sci. 9 73-82 (2000)
  31. Structural differences among subfamilies of EF-hand proteins--a view from the pseudo two-fold symmetry axis. Kawasaki H, Kretsinger RH. Proteins 82 2915-2924 (2014)
  32. Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 A, and its comparison with the native and cadmium-substituted structures. Kumar VD, Lee L, Edwards BF. FEBS Lett. 283 311-316 (1991)
  33. Scaffoldin-borne family 3b carbohydrate-binding module from the cellulosome of Bacteroides cellulosolvens: structural diversity and significance of calcium for carbohydrate binding. Yaniv O, Shimon LJ, Bayer EA, Lamed R, Frolow F. Acta Crystallogr. D Biol. Crystallogr. 67 506-515 (2011)
  34. Human S100b protein: formation of a tetramer from synthetic calcium-binding site peptides. Donaldson C, Barber KR, Kay CM, Shaw GS. Protein Sci. 4 765-772 (1995)
  35. Integration of Diverse Research Methods to Analyze and Engineer Ca-Binding Proteins: From Prediction to Production. Kirberger M, Wang X, Zhao K, Tang S, Chen G, Yang JJ. Curr Bioinform 5 68-80 (2010)
  36. The structure of cardiac troponin C regulatory domain with bound Cd2+ reveals a closed conformation and unique ion coordination. Zhang XL, Tibbits GF, Paetzel M. Acta Crystallogr. D Biol. Crystallogr. 69 722-734 (2013)
  37. Structural and computational insights into the versatility of cadmium binding to proteins. Friedman R. Dalton Trans 43 2878-2887 (2014)
  38. Structural dependencies of protein backbone 2JNC' couplings. Juranić N, Dannenberg JJ, Cornilescu G, Salvador P, Atanasova E, Ahn HC, Macura S, Markley JL, Prendergast FG. Protein Sci. 17 768-776 (2008)
  39. Comparative analysis of thermoadaptation within the archaeal glyceraldehyde-3-phosphate dehydrogenases from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Charron C, Vitoux B, Aubry A. Biopolymers 65 263-273 (2002)
  40. Isolation of parvalbumin isotypes by preparative HPLC techniques. Ross C, Hevener S, Clark R, Hartmann JX, Mari F. Prep. Biochem. Biotechnol. 28 49-60 (1998)
  41. Solution structures of chicken parvalbumin 3 in the Ca(2+)-free and Ca(2+)-bound states. Henzl MT, Tanner JJ, Tan A. Proteins 79 752-764 (2011)
  42. Temperature dependence of structure and dynamics of the hydrated Ca2+ ion according to ab initio quantum mechanical charge field and classical molecular dynamics. Lim LH, Pribil AB, Ellmerer AE, Randolf BR, Rode BM. J Comput Chem 31 1195-1200 (2010)
  43. Crystallization and preliminary X-ray investigation of a sarcoplasmic calcium-binding protein from amphioxus. Cook WJ, Babu YS, Cox JA. J. Mol. Biol. 221 1071-1073 (1991)
  44. Feed-forward neural networks for secondary structure prediction. Barlow TW. J Mol Graph 13 175-183 (1995)
  45. Conformational plasticity of the calcium-binding pocket in the Burkholderia glumae lipase: remodeling induced by mutation of calcium coordinating residues. Papaleo E, Invernizzi G. Biopolymers 95 117-126 (2011)
  46. Solution structure of the major fish allergen parvalbumin Sco j 1 derived from the Pacific mackerel. Kumeta H, Nakayama H, Ogura K. Sci Rep 7 17160 (2017)


Related citations provided by authors (13)

  1. The Coordination Polyhedron of Ca2+,Cd2+ in Parvalbumin. Swain AL, Amma EL Inorganica Chim Acta 163 5- (1989)
  2. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis.. Moews PC, Kretsinger RH J Mol Biol 91 201-25 (1975)
  3. Terbium Replacement of Calcium in Carp Muscle Calcium-Binding Parvalbumin,an X-Ray Crystallographic Study. Moews PC, Kretsinger RH J. Mol. Biol. 91 229- (1975)
  4. Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme.. Tufty RM, Kretsinger RH Science 187 167-9 (1975)
  5. Calcium Binding Proteins and Natural Membranes. Kretsinger RH Perspectives in Membrane Biology 229- (1974)
  6. The Coordination of Calcium Ions by Carp Muscle Calcium-Binding Proteins A,B,and C. Coffee CJ, Bradshaw RA, Kretsinger RH Adv. Exp. Med. Biol. 48 211- (1974)
  7. Carp Muscle Calcium-Binding Protein, I.Characterization of the Tryptic Peptides and the Complete Amino Acid Sequence of Component B. Coffee CJ, Bradshaw RA J. Biol. Chem. 248 3305- (1973)
  8. Carp Muscle Calcium-Binding Protein, II.Structure Determination and General Description. Kretsinger RH, Nockolds CE J. Biol. Chem. 248 3313- (1973)
  9. Carp Muscle Calcium-Binding Protein, III.Phase Refinement Using the Tangent Formula. Hendrickson WA, Karle J J. Biol. Chem. 248 3327- (1973)
  10. Gene duplication in carp muscle calcium binding protein.. McLachlan AD Nat New Biol 240 83-5 (1972)
  11. Gene triplication deduced from the tertiary structure of a muscle calcium binding protein.. Kretsinger RH Nat New Biol 240 85-8 (1972)
  12. Structure of a Calcium Binding Carp Myogen. Nockolds CE, Kretsinger RH, Coffee CJ, Bradshaw RA Proc. Natl. Acad. Sci. U.S.A. 69 581- (1972)
  13. The structure of a calcium-binding protein from carp muscle.. Kretsinger RH, Nockolds CE, Coffee CJ, Bradshaw RA Cold Spring Harb Symp Quant Biol 36 217-20 (1972)