4htc Citations

Refined structure of the hirudin-thrombin complex.

J Mol Biol 221 583-601 (1991)
Cited: 194 times
EuropePMC logo PMID: 1920434

Abstract

The structure of a recombinant hirudin (variant 2, Lys47) human alpha-thrombin complex has been refined using restrained least-squares methods to a crystallographic R-factor of 0.173. The hirudin structure consists of an N-terminal domain folded into a globular unit and a long 17-peptide C-terminal in an extended chain conformation. The N-terminal domain binds at the active-site of thrombin where Ile1' to Tyr3' penetrates to the catalytic triad. The alpha-amino group of Ile1' of hirudin makes a hydrogen bond with OG of Ser195 of thrombin, the side-chains of Ile1' and Tyr3' occupy the apolar site, Thr2' is at the entrance to, but does not enter, the S1 specificity site and Ile1' to Tyr3' form a parallel beta-strand with Ser214 to Gly219. The latter interaction is antiparallel in all other serine proteinase-protein inhibitor complexes. The extended C-terminal segment of hirudin, which is abundant in acidic residues, makes many electrostatic interactions with the fibrinogen binding exosite while the last five residues are in a 3(10) helical turn residing in a hydrophobic patch on the thrombin surface. The precision of the complementarity displayed by these two molecules produces numerous interactions, which although independently generally weak, together are responsible for the high degree of affinity and specificity. Although hirudin-thrombin and D-Phe-Pro-Arg-chloromethyl ketone-thrombin differ in conformation in the autolysis loop (Lys145 to Gly150), this is most likely due to different crystal packing interactions and changes in circular dichroism between the two are probably due to the inherent flexibility of the loop. An RGD sequence, which is generally known to be involved in cell surface receptor interactions, occurs in thrombin and is associated with a long solvent channel filled with water molecules leading to the surface from the end of the S1 site. However, the RGD triplet does not appear to be able to interact in concert in a surface binding mode.

Reviews - 4htc mentioned but not cited (4)

  1. Thrombin. Di Cera E. Mol. Aspects Med. 29 203-254 (2008)
  2. Rate constants and mechanisms of intrinsically disordered proteins binding to structured targets. Zhou HX, Pang X, Lu C. Phys Chem Chem Phys 14 10466-10476 (2012)
  3. Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Int J Mol Sci 22 10803 (2021)
  4. Proton Bridging in Catalysis by and Inhibition of Serine Proteases of the Blood Cascade System. Kovach IM. Life (Basel) 11 396 (2021)

Articles - 4htc mentioned but not cited (24)

  1. Anchor residues in protein-protein interactions. Rajamani D, Thiel S, Vajda S, Camacho CJ. Proc Natl Acad Sci U S A 101 11287-11292 (2004)
  2. Realistic protein-protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Schlosshauer M, Baker D. Protein Sci 13 1660-1669 (2004)
  3. Deamidation of human proteins. Robinson NE, Robinson AB. Proc. Natl. Acad. Sci. U.S.A. 98 12409-12413 (2001)
  4. Electrostatics in protein-protein docking. Heifetz A, Katchalski-Katzir E, Eisenstein M. Protein Sci. 11 571-587 (2002)
  5. DARS (Decoys As the Reference State) potentials for protein-protein docking. Chuang GY, Kozakov D, Brenke R, Comeau SR, Vajda S. Biophys J 95 4217-4227 (2008)
  6. Crystal structure of an RNA aptamer bound to thrombin. Long SB, Long MB, White RR, Sullenger BA. RNA 14 2504-2512 (2008)
  7. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Bertonati C, Honig B, Alexov E. Biophys J 92 1891-1899 (2007)
  8. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  9. Cavities and atomic packing in protein structures and interfaces. Sonavane S, Chakrabarti P. PLoS Comput. Biol. 4 e1000188 (2008)
  10. Quantitative prediction of protein-protein binding affinity with a potential of mean force considering volume correction. Su Y, Zhou A, Xia X, Li W, Sun Z. Protein Sci 18 2550-2558 (2009)
  11. Effect of Na+ binding on the conformation, stability and molecular recognition properties of thrombin. De Filippis V, De Dea E, Lucatello F, Frasson R. Biochem. J. 390 485-492 (2005)
  12. A simple reference state makes a significant improvement in near-native selections from structurally refined docking decoys. Liang S, Liu S, Zhang C, Zhou Y. Proteins 69 244-253 (2007)
  13. 3-Nitrotyrosine as a spectroscopic probe for investigating protein protein interactions. De Filippis V, Frasson R, Fontana A. Protein Sci. 15 976-986 (2006)
  14. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct. Biol. 10 40 (2010)
  15. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y. Proteins 75 397-403 (2009)
  16. Incorporation of the fluorescent amino acid 7-azatryptophan into the core domain 1-47 of hirudin as a probe of hirudin folding and thrombin recognition. De Filippis V, De Boni S, De Dea E, Dalzoppo D, Grandi C, Fontana A. Protein Sci. 13 1489-1502 (2004)
  17. Refining near-native protein-protein docking decoys by local resampling and energy minimization. Liang S, Wang G, Zhou Y. Proteins 76 309-316 (2009)
  18. research-article Treating ion distribution with Gaussian-based smooth dielectric function in DelPhi. Jia Z, Li L, Chakravorty A, Alexov E. J Comput Chem 38 1974-1979 (2017)
  19. Structural basis of RGD-hirudin binding to thrombin: Tyr3 and five C-terminal residues are crucial for inhibiting thrombin activity. Huang Y, Zhang Y, Zhao B, Xu Q, Zhou X, Song H, Yu M, Mo W. BMC Struct. Biol. 14 26 (2014)
  20. Computational study for protein-protein docking using global optimization and empirical potentials. Lee K. Int J Mol Sci 9 65-77 (2008)
  21. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning. Xie ZR, Chen J, Wu Y. Sci Rep 7 46622 (2017)
  22. Proton bridging in the interactions of thrombin with hirudin and its mimics. Kovach IM, Kakalis L, Jordan F, Zhang D. Biochemistry 52 2472-2481 (2013)
  23. RGD-hirudin-based low molecular weight peptide prevents blood coagulation via subcutaneous injection. Li YR, Huang YN, Zhao B, Wu MF, Li TY, Zhang YL, Chen D, Yu M, Mo W. Acta Pharmacol Sin 41 753-762 (2020)
  24. Identification and characterization of hirudin-HN, a new thrombin inhibitor, from the salivary glands of Hirudo nipponia. Cheng B, Liu F, Guo Q, Lu Y, Shi H, Ding A, Xu C. PeerJ 7 e7716 (2019)


Reviews citing this publication (29)

  1. Natural protein proteinase inhibitors and their interaction with proteinases. Bode W, Huber R. Eur. J. Biochem. 204 433-451 (1992)
  2. Principles of docking: An overview of search algorithms and a guide to scoring functions. Halperin I, Ma B, Wolfson H, Nussinov R. Proteins 47 409-443 (2002)
  3. Evolutionary families of peptidase inhibitors. Rawlings ND, Tolle DP, Barrett AJ. Biochem. J. 378 705-716 (2004)
  4. A player of many parts: the spotlight falls on thrombin's structure. Stubbs MT, Bode W. Thromb. Res. 69 1-58 (1993)
  5. Locating and characterizing binding sites on proteins. Mattos C, Ringe D. Nat. Biotechnol. 14 595-599 (1996)
  6. The development of hirudin as an antithrombotic drug. Markwardt F. Thromb. Res. 74 1-23 (1994)
  7. Exosite-driven substrate specificity and function in coagulation. Krishnaswamy S. J. Thromb. Haemost. 3 54-67 (2005)
  8. Principles of protein-protein recognition from structure to thermodynamics. Janin J. Biochimie 77 497-505 (1995)
  9. The clot thickens: clues provided by thrombin structure. Stubbs MT, Bode W. Trends Biochem. Sci. 20 23-28 (1995)
  10. Thrombin interactions. Di Cera E. Chest 124 11S-7S (2003)
  11. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Goettig P, Magdolen V, Brandstetter H. Biochimie 92 1546-1567 (2010)
  12. Structure and interaction modes of thrombin. Bode W. Blood Cells Mol. Dis. 36 122-130 (2006)
  13. Tick-derived Kunitz-type inhibitors as antihemostatic factors. Corral-Rodríguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P. Insect Biochem. Mol. Biol. 39 579-595 (2009)
  14. Targeting thrombin--rational drug design from natural mechanisms. Huntington JA, Baglin TP. Trends Pharmacol. Sci. 24 589-595 (2003)
  15. Thrombin domains: structure, function and interaction with platelet receptors. De Cristofaro R, De Candia E. J. Thromb. Thrombolysis 15 151-163 (2003)
  16. Thrombin as procoagulant and anticoagulant. Di Cera E. J. Thromb. Haemost. 5 Suppl 1 196-202 (2007)
  17. Hirudin: clinical potential of a thrombin inhibitor. Johnson PH. Annu. Rev. Med. 45 165-177 (1994)
  18. Proteinase inhibitors from the European medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects. Ascenzi P, Amiconi G, Bode W, Bolognesi M, Coletta M, Menegatti E. Mol. Aspects Med. 16 215-313 (1995)
  19. Thrombin allostery. Di Cera E, Page MJ, Bah A, Bush-Pelc LA, Garvey LC. Phys Chem Chem Phys 9 1291-1306 (2007)
  20. Natural inhibitors of thrombin. Huntington JA. Thromb. Haemost. 111 583-589 (2014)
  21. Anticoagulant therapy: basic principles, classic approaches and recent developments. Sinauridze EI, Panteleev MA, Ataullakhanov FI. Blood Coagul. Fibrinolysis 23 482-493 (2012)
  22. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Wong KL, Wong RN, Zhang L, Liu WK, Ng TB, Shaw PC, Kwok PC, Lai YM, Zhang ZJ, Zhang Y, Tong Y, Cheung HP, Lu J, Sze SC. Chin Med 9 19 (2014)
  23. Structural basis of thrombin-protease-activated receptor interactions. Gandhi PS, Chen Z, Appelbaum E, Zapata F, Di Cera E. IUBMB Life 63 375-382 (2011)
  24. Peptidomimetic thrombin inhibitors. Kikelj D. Pathophysiol. Haemost. Thromb. 33 487-491 (2003)
  25. Thrombin inhibitors from different animals. Tanaka-Azevedo AM, Morais-Zani K, Torquato RJ, Tanaka AS. J. Biomed. Biotechnol. 2010 641025 (2010)
  26. Molecular aspects of thrombosis and antithrombotic drugs. Wu KK, Matijevic-Aleksic N. Crit Rev Clin Lab Sci 42 249-277 (2005)
  27. Controlling oligomerization of pharmaceutical proteins. Schein CH. Pharm Acta Helv 69 119-126 (1994)
  28. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction. De Filippis V, Acquasaliente L, Pontarollo G, Peterle D. Biotechnol. Appl. Biochem. 65 69-80 (2018)
  29. Proteases: Pivot Points in Functional Proteomics. Verhamme IM, Leonard SE, Perkins RC. Methods Mol. Biol. 1871 313-392 (2019)

Articles citing this publication (137)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J. Mol. Biol. 285 2177-2198 (1999)
  2. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Bode W, Turk D, Karshikov A. Protein Sci. 1 426-471 (1992)
  3. Electrostatic complementarity at protein/protein interfaces. McCoy AJ, Chandana Epa V, Colman PM. J. Mol. Biol. 268 570-584 (1997)
  4. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, Tulinsky A, Westbrook M, Maraganore JM. J. Mol. Biol. 221 1379-1393 (1991)
  5. Molecular recognition of human angiogenin by placental ribonuclease inhibitor--an X-ray crystallographic study at 2.0 A resolution. Papageorgiou AC, Shapiro R, Acharya KR. EMBO J. 16 5162-5177 (1997)
  6. Fluorescence polarization assays in small molecule screening. Lea WA, Simeonov A. Expert Opin Drug Discov 6 17-32 (2011)
  7. Proline-dependent oligomerization with arm exchange. Bergdoll M, Remy MH, Cagnon C, Masson JM, Dumas P. Structure 5 391-401 (1997)
  8. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kröger B, Höffken W, Bode W. EMBO J. 14 5149-5157 (1995)
  9. Elusive affinities. Janin J. Proteins 21 30-39 (1995)
  10. Refined 2.3 A X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. Brandstetter H, Turk D, Hoeffken HW, Grosse D, Stürzebecher J, Martin PD, Edwards BF, Bode W. J. Mol. Biol. 226 1085-1099 (1992)
  11. Crystal structure of thrombin bound to heparin. Carter WJ, Cama E, Huntington JA. J. Biol. Chem. 280 2745-2749 (2005)
  12. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Vijayalakshmi J, Padmanabhan KP, Mann KG, Tulinsky A. Protein Sci. 3 2254-2271 (1994)
  13. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. Dullweber F, Stubbs MT, Musil D, Stürzebecher J, Klebe G. J. Mol. Biol. 313 593-614 (2001)
  14. A critical assessment of comparative molecular modeling of tertiary structures of proteins. Mosimann S, Meleshko R, James MN. Proteins 23 301-317 (1995)
  15. Automated prediction of protein association rate constants. Qin S, Pang X, Zhou HX. Structure 19 1744-1751 (2011)
  16. Molecular mapping of thrombin-receptor interactions. Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, Di Cera E. Proteins 45 107-116 (2001)
  17. The molecular environment of the Na+ binding site of thrombin. Zhang E, Tulinsky A. Biophys. Chem. 63 185-200 (1997)
  18. Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis. Iwanaga S, Okada M, Isawa H, Morita A, Yuda M, Chinzei Y. Eur. J. Biochem. 270 1926-1934 (2003)
  19. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study. Helms V, Wade RC. Biophys. J. 69 810-824 (1995)
  20. Unexpected binding mode of tick anticoagulant peptide complexed to bovine factor Xa. Wei A, Alexander RS, Duke J, Ross H, Rosenfeld SA, Chang CH. J. Mol. Biol. 283 147-154 (1998)
  21. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. Koh CY, Kazimirova M, Trimnell A, Takac P, Labuda M, Nuttall PA, Kini RM. J Biol Chem 282 29101-29113 (2007)
  22. Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T. J. Biol. Chem. 287 21992-22003 (2012)
  23. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Long YQ, Lee SL, Lin CY, Enyedy IJ, Wang S, Li P, Dickson RB, Roller PP. Bioorg. Med. Chem. Lett. 11 2515-2519 (2001)
  24. The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin. van de Locht A, Bode W, Huber R, Le Bonniec BF, Stone SR, Esmon CT, Stubbs MT. EMBO J. 16 2977-2984 (1997)
  25. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Ersmark K, Del Valle JR, Hanessian S. Angew. Chem. Int. Ed. Engl. 47 1202-1223 (2008)
  26. Hydrophobic complementarity in protein-protein docking. Berchanski A, Shapira B, Eisenstein M. Proteins 56 130-142 (2004)
  27. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Bah A, Chen Z, Bush-Pelc LA, Mathews FS, Di Cera E. Proc. Natl. Acad. Sci. U.S.A. 104 11603-11608 (2007)
  28. Electrostatic interactions in the association of proteins: an analysis of the thrombin-hirudin complex. Karshikov A, Bode W, Tulinsky A, Stone SR. Protein Sci. 1 727-735 (1992)
  29. The second Kunitz domain of human tissue factor pathway inhibitor: cloning, structure determination and interaction with factor Xa. Burgering MJ, Orbons LP, van der Doelen A, Mulders J, Theunissen HJ, Grootenhuis PD, Bode W, Huber R, Stubbs MT. J. Mol. Biol. 269 395-407 (1997)
  30. Cleavage of the thrombin receptor: identification of potential activators and inactivators. Parry MA, Myles T, Tschopp J, Stone SR. Biochem. J. 320 ( Pt 1) 335-341 (1996)
  31. New insights into the regulation of the blood clotting cascade derived from the X-ray crystal structure of bovine meizothrombin des F1 in complex with PPACK. Martin PD, Malkowski MG, Box J, Esmon CT, Edwards BF. Structure 5 1681-1693 (1997)
  32. The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). Farady CJ, Sun J, Darragh MR, Miller SM, Craik CS. J. Mol. Biol. 369 1041-1051 (2007)
  33. Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor. Ciprandi A, de Oliveira SK, Masuda A, Horn F, Termignoni C. Exp. Parasitol. 114 40-46 (2006)
  34. Nuclear magnetic resonance solution structure of hirudin(1-51) and comparison with corresponding three-dimensional structures determined using the complete 65-residue hirudin polypeptide chain. Szyperski T, Güntert P, Stone SR, Wüthrich K. J. Mol. Biol. 228 1193-1205 (1992)
  35. Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Maryanoff BE, Qiu X, Padmanabhan KP, Tulinsky A, Almond HR, Andrade-Gordon P, Greco MN, Kauffman JA, Nicolaou KC, Liu A. Proc. Natl. Acad. Sci. U.S.A. 90 8048-8052 (1993)
  36. Hydrogen/deuterium exchange mass spectrometry for investigating protein-ligand interactions. Garcia RA, Pantazatos D, Villarreal FJ. Assay Drug Dev Technol 2 81-91 (2004)
  37. Polyphosphate binds with high affinity to exosite II of thrombin. Mutch NJ, Myles T, Leung LL, Morrissey JH. J. Thromb. Haemost. 8 548-555 (2010)
  38. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin. Liu CC, Brustad E, Liu W, Schultz PG. J. Am. Chem. Soc. 129 10648-10649 (2007)
  39. Crystal structure of thrombin in a self-inhibited conformation. Pineda AO, Chen ZW, Bah A, Garvey LC, Mathews FS, Di Cera E. J. Biol. Chem. 281 32922-32928 (2006)
  40. Computational combinatorial ligand design: application to human alpha-thrombin. Caflisch A. J. Comput. Aided Mol. Des. 10 372-396 (1996)
  41. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. Gandhi PS, Chen Z, Di Cera E. J. Biol. Chem. 285 15393-15398 (2010)
  42. Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Egloff MP, Sarda L, Verger R, Cambillau C, van Tilbeurgh H. Protein Sci. 4 44-57 (1995)
  43. Electrostatic interactions in hirudin-thrombin binding. Sharp KA. Biophys. Chem. 61 37-49 (1996)
  44. Changes in interactions in complexes of hirudin derivatives and human alpha-thrombin due to different crystal forms. Priestle JP, Rahuel J, Rink H, Tones M, Grütter MG. Protein Sci. 2 1630-1642 (1993)
  45. NMR solution structure of the recombinant tick anticoagulant protein (rTAP), a factor Xa inhibitor from the tick Ornithodoros moubata. Antuch W, Güntert P, Billeter M, Hawthorne T, Grossenbacher H, Wüthrich K. FEBS Lett. 352 251-257 (1994)
  46. The dual role of thrombin's anion-binding exosite-I in the recognition and cleavage of the protease-activated receptor 1. Myles T, Le Bonniec BF, Stone SR. Eur. J. Biochem. 268 70-77 (2001)
  47. Inherent flexibility in a potent inhibitor of blood coagulation, recombinant nematode anticoagulant protein c2. Duggan BM, Dyson HJ, Wright PE. Eur. J. Biochem. 265 539-548 (1999)
  48. Thrombin functions through its RGD sequence in a non-canonical conformation. Papaconstantinou ME, Carrell CJ, Pineda AO, Bobofchak KM, Mathews FS, Flordellis CS, Maragoudakis ME, Tsopanoglou NE, Di Cera E. J Biol Chem 280 29393-29396 (2005)
  49. Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins. Hines J, Skrzypek E, Kajava AV, Straley SC. Microb. Pathog. 30 193-209 (2001)
  50. A novel class of small functional peptides that bind and inhibit human alpha-thrombin isolated by mRNA display. Raffler NA, Schneider-Mergener J, Famulok M. Chem. Biol. 10 69-79 (2003)
  51. Fibrinogen-elongated gamma chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. Lancellotti S, Rutella S, De Filippis V, Pozzi N, Rocca B, De Cristofaro R. J. Biol. Chem. 283 30193-30204 (2008)
  52. Hirudin binding reveals key determinants of thrombin allostery. Mengwasser KE, Bush LA, Shih P, Cantwell AM, Di Cera E. J Biol Chem 280 26997-27003 (2005)
  53. Identification of residues linked to the slow-->fast transition of thrombin. Guinto ER, Vindigni A, Ayala YM, Dang QD, Di Cera E. Proc. Natl. Acad. Sci. U.S.A. 92 11185-11189 (1995)
  54. Rigid-body docking with mutant constraints of influenza hemagglutinin with antibody HC19. Cherfils J, Bizebard T, Knossow M, Janin J. Proteins 18 8-18 (1994)
  55. Mutant N143P reveals how Na+ activates thrombin. Niu W, Chen Z, Bush-Pelc LA, Bah A, Gandhi PS, Di Cera E. J. Biol. Chem. 284 36175-36185 (2009)
  56. Interaction of semisynthetic variants of RNase A with ribonuclease inhibitor. Neumann U, Hofsteenge J. Protein Sci. 3 248-256 (1994)
  57. Binding of alpha-thrombin to surface-anchored platelet glycoprotein Ib(alpha) sulfotyrosines through a two-site mechanism involving exosite I. Zarpellon A, Celikel R, Roberts JR, McClintock RA, Mendolicchio GL, Moore KL, Jing H, Varughese KI, Ruggeri ZM. Proc. Natl. Acad. Sci. U.S.A. 108 8628-8633 (2011)
  58. Probing the structure of hirudin from Hirudinaria manillensis by limited proteolysis. Isolation, characterization and thrombin-inhibitory properties of N-terminal fragments. Vindigni A, De Filippis V, Zanotti G, Visco C, Orsini G, Fontana A. Eur. J. Biochem. 226 323-333 (1994)
  59. Crystal structure of thrombin in complex with S-variegin: insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors. Koh CY, Kumar S, Kazimirova M, Nuttall PA, Radhakrishnan UP, Kim S, Jagadeeswaran P, Imamura T, Mizuguchi J, Iwanaga S, Swaminathan K, Kini RM. PLoS ONE 6 e26367 (2011)
  60. Crystal structures of thrombin with thiazole-containing inhibitors: probes of the S1' binding site. Matthews JH, Krishnan R, Costanzo MJ, Maryanoff BE, Tulinsky A. Biophys. J. 71 2830-2839 (1996)
  61. From natural to synthetic multisite thrombin inhibitors. Lombardi A, De Simone G, Galdiero S, Staiano N, Nastri F, Pavone V. Biopolymers 51 19-39 (1999)
  62. Mechanism of the anticoagulant activity of thrombin mutant W215A/E217A. Gandhi PS, Page MJ, Chen Z, Bush-Pelc L, Di Cera E. J. Biol. Chem. 284 24098-24105 (2009)
  63. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. de Veer SJ, Ukolova SS, Munro CA, Swedberg JE, Buckle AM, Harris JM. Biopolymers 100 510-518 (2013)
  64. Synthesis, structure, and structure-activity relationships of divalent thrombin inhibitors containing an alpha-keto-amide transition-state mimetic. Krishnan R, Tulinsky A, Vlasuk GP, Pearson D, Vallar P, Bergum P, Brunck TK, Ripka WC. Protein Sci. 5 422-433 (1996)
  65. Using aptamers as capture reagents in bead-based assay systems for diagnostics and hit identification. Porschewski P, Grättinger MA, Klenzke K, Erpenbach A, Blind MR, Schäfer F. J Biomol Screen 11 773-781 (2006)
  66. Crystallographic determination of the structures of human alpha-thrombin complexed with BMS-186282 and BMS-189090. Malley MF, Tabernero L, Chang CY, Ohringer SL, Roberts DG, Das J, Sack JS. Protein Sci. 5 221-228 (1996)
  67. Restoring the procofactor state of factor Va-like variants by complementation with B-domain peptides. Bunce MW, Bos MH, Krishnaswamy S, Camire RM. J. Biol. Chem. 288 30151-30160 (2013)
  68. Crystal structure of the complex of human alpha-thrombin and nonhydrolyzable bifunctional inhibitors, hirutonin-2 and hirutonin-6. Zdanov A, Wu S, DiMaio J, Konishi Y, Li Y, Wu X, Edwards BF, Martin PD, Cygler M. Proteins 17 252-265 (1993)
  69. Impact of protein-protein contacts on the conformation of thrombin-bound hirudin studied by comparison with the nuclear magnetic resonance solution structure of hirudin(1-51). Szyperski T, Güntert P, Stone SR, Tulinsky A, Bode W, Huber R, Wüthrich K. J. Mol. Biol. 228 1206-1211 (1992)
  70. Kinetic dissection of the pre-existing conformational equilibrium in the trypsin fold. Vogt AD, Chakraborty P, Di Cera E. J. Biol. Chem. 290 22435-22445 (2015)
  71. Molecular aptamers for real-time protein-protein interaction study. Cao Z, Tan W. Chemistry 11 4502-4508 (2005)
  72. Thrombin hydrolysis of human osteopontin is dependent on thrombin anion-binding exosites. Myles T, Leung LL. J. Biol. Chem. 283 17789-17796 (2008)
  73. Biophysical investigation of GpIbalpha binding to thrombin anion binding exosite II. Sabo TM, Maurer MC. Biochemistry 48 7110-7122 (2009)
  74. Molecular dissection of Rab11 binding from coiled-coil formation in the Rab11-FIP2 C-terminal domain. Wei J, Fain S, Harrison C, Feig LA, Baleja JD. Biochemistry 45 6826-6834 (2006)
  75. Anticoagulant thrombins. Di Cera E. Trends Cardiovasc. Med. 8 340-350 (1998)
  76. Chemical synthesis and structural characterization of the RGD-protein decorsin: a potent inhibitor of platelet aggregation. Polverino de Laureto P, Scaramella E, De Filippis V, Marin O, Doni MG, Fontana A. Protein Sci. 7 433-444 (1998)
  77. Critical role of W60d in thrombin allostery. Guinto ER, Di Cera E. Biophys. Chem. 64 103-109 (1997)
  78. Crystal structure of two new bifunctional nonsubstrate type thrombin inhibitors complexed with human alpha-thrombin. Féthière J, Tsuda Y, Coulombe R, Konishi Y, Cygler M. Protein Sci. 5 1174-1183 (1996)
  79. Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Guo SW, Du Y, Liu X. Reprod Sci 23 1044-1052 (2016)
  80. Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin. Jablonka W, Kotsyfakis M, Mizurini DM, Monteiro RQ, Lukszo J, Drake SK, Ribeiro JM, Andersen JF. PLoS ONE 10 e0133991 (2015)
  81. Incorporation of noncoded amino acids into the N-terminal domain 1-47 of hirudin yields a highly potent and selective thrombin inhibitor. De Filippis V, Russo I, Vindigni A, Di Cera E, Salmaso S, Fontana A. Protein Sci. 8 2213-2217 (1999)
  82. Label-free fluorescence assay for thrombin based on unmodified quantum dots. Li L, Lin H, Lei C, Nie Z, Huang Y, Yao S. Biosens Bioelectron 54 42-47 (2014)
  83. Investigation on minor degraded derivatives of the recombinant hirudin variant HM2 from Hirudinaria manillensis isolated by isoelectric focusing in multicompartment electrolyzers. Bossi A, Righetti PG, Visco C, Breme U, Mauriello M, Valsasina B, Orsini G, Wenisch E. Electrophoresis 17 932-937 (1996)
  84. Preparation of anhydrothrombin and characterization of its interaction with natural thrombin substrates. Hosokawa K, Ohnishi T, Shima M, Nagata M, Koide T. Biochem. J. 354 309-313 (2001)
  85. The methyl group of N(alpha)(Me)Arg-containing peptides disturbs the active-site geometry of thrombin, impairing efficient cleavage. Friedrich R, Steinmetzer T, Huber R, Stürzebecher J, Bode W. J. Mol. Biol. 316 869-874 (2002)
  86. Comparison of the structures of the cyclotheonamide A complexes of human alpha-thrombin and bovine beta-trypsin. Ganesh V, Lee AY, Clardy J, Tulinsky A. Protein Sci 5 825-835 (1996)
  87. Hirunorms are true hirudin mimetics. The crystal structure of human alpha-thrombin-hirunorm V complex. De Simone G, Lombardi A, Galdiero S, Nastri F, Della Morte R, Staiano N, Pedone C, Bolognesi M, Pavone V. Protein Sci. 7 243-253 (1998)
  88. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. J. Med. Chem. 57 3030-3039 (2014)
  89. Characterization of thrombin-bound dabigatran effects on protease-activated receptor-1 expression and signaling in vitro. Chen B, Soto AG, Coronel LJ, Goss A, van Ryn J, Trejo J. Mol. Pharmacol. 88 95-105 (2015)
  90. Interaction between Yersinia pestis YopM protein and human alpha-thrombin. Skrzypek E, Straley SC. Thromb. Res. 84 33-43 (1996)
  91. NMR solution structure of a novel hirudin variant HM2, N-terminal 1-47 and N64-->V + G mutant. Nicastro G, Baumer L, Bolis G, Tatò M. Biopolymers 41 731-749 (1997)
  92. Structure of tick anticoagulant peptide at 1.6 A resolution complexed with bovine pancreatic trypsin inhibitor. St Charles R, Padmanabhan K, Arni RV, Padmanabhan KP, Tulinsky A. Protein Sci. 9 265-272 (2000)
  93. Amidino-containing Schiff base copper(II) and iron(III) chelates as a thrombin inhibitor. Toyota E, Sekizaki H, Takahashi YU, Itoh K, Tanizawa K. Chem. Pharm. Bull. 53 22-26 (2005)
  94. Modulation of thrombin-hirudin interaction by specific ion effects. De Cristofaro R, Fenton JW, Di Cera E. J. Mol. Biol. 226 263-269 (1992)
  95. Molecular mapping of the thrombin-heparin cofactor II complex. Fortenberry YM, Whinna HC, Gentry HR, Myles T, Leung LL, Church FC. J. Biol. Chem. 279 43237-43244 (2004)
  96. Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant-anticoagulant equilibrium toward thrombosis. Pontarollo G, Acquasaliente L, Peterle D, Frasson R, Artusi I, De Filippis V. J. Biol. Chem. 292 15161-15179 (2017)
  97. Site-directed mutagenesis of the leech-derived factor Xa inhibitor antistasin. Probing of the reactive site. Hofmann KJ, Nutt EM, Dunwiddie CT. Biochem. J. 287 ( Pt 3) 943-949 (1992)
  98. The NMR solution structure of recombinant RGD-hirudin. Song X, Mo W, Liu X, Zhu L, Yan X, Song H, Dai L. Biochem. Biophys. Res. Commun. 360 103-108 (2007)
  99. Directed evolution towards protease-resistant hirudin variants. Wirsching F, Keller M, Hildmann C, Riester D, Schwienhorst A. Mol. Genet. Metab. 80 451-462 (2003)
  100. Hirudins of the Asian medicinal leech, Hirudinaria manillensis: same same, but different. Lukas P, Wolf R, Rauch BH, Hildebrandt JP, Müller C. Parasitol Res 118 2223-2233 (2019)
  101. Investigation on recombinant hirudin via oral route. Cen X, Ni J, Tan T, Liu X, Li C, Chen J, Huang Y, Zhu S, Bi Q. Peptides 27 836-840 (2006)
  102. Chemical synthesis of the RGD-protein decorsin: Pro-->Ala replacement reduces protein thermostability. Frare E, de Laureto PP, Scaramella E, Tonello F, Marin O, Deana R, Fontana A. Protein Eng. Des. Sel. 18 487-495 (2005)
  103. Interaction of thrombin with antithrombin, heparin cofactor II, and protein C inhibitor. Whinna HC, Church FC. J. Protein Chem. 12 677-688 (1993)
  104. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles. Wang M, Lei C, Nie Z, Guo M, Huang Y, Yao S. Talanta 116 468-473 (2013)
  105. Pharmacology and controlled release of hirudin for cardiovascular disorders. Kim DD, Horbett TA, Takeno MM, Ratner BD. Cardiovasc. Pathol. 5 337-349 (1996)
  106. The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking. Segal D, Eisenstein M. Proteins 59 580-591 (2005)
  107. Transition modes in Ising networks: an approximate theory for macromolecular recognition. Keating S, Di Cera E. Biophys. J. 65 253-269 (1993)
  108. Contribution of interactions with the core domain of hirudin to the stability of its complex with thrombin. Betz A, Hopkins PC, Le Bonniec BF, Stone SR. Biochem. J. 298 ( Pt 2) 507-510 (1994)
  109. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T. J Enzyme Inhib Med Chem 32 712-721 (2017)
  110. Factor Xa: simulation studies with an eye to inhibitor design. Daura X, Haaksma E, van Gunsteren WF. J. Comput. Aided Mol. Des. 14 507-529 (2000)
  111. Letter Multiple inhibitory kinetics reveal an allosteric interplay among thrombin functional sites. Zavyalova E, Kopylov A. Thromb. Res. 135 212-216 (2015)
  112. The crystal structure of alpha-thrombin-hirunorm IV complex reveals a novel specificity site recognition mode. Lombardi A, De Simone G, Nastri F, Galdiero S, Della Morte R, Staiano N, Pedone C, Bolognesi M, Pavone V. Protein Sci. 8 91-95 (1999)
  113. Enhanced secretion of adhesive recognition sequence containing hirudin III mutein in E. coli. Tan S, Wu W, Li X, Cui L, Li B, Ruan Q. Mol. Biotechnol. 36 1-8 (2007)
  114. Hirudin and Decorsins of the North American Medicinal Leech Macrobdella decora: Gene Structure Reveals Homology to Hirudins and Hirudin-like Factors of Eurasian Medicinal Leeches. Müller C, Lukas P, Lemke S, Hildebrandt JP. J Parasitol 105 423-431 (2019)
  115. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin. Lau WF, Tabernero L, Sack JS, Iwanowicz EJ. Bioorg. Med. Chem. 3 1039-1048 (1995)
  116. Rational design of hirulog-type inhibitors of thrombin. Egner U, Hoyer GA, Schleuning WD. J. Comput. Aided Mol. Des. 8 479-490 (1994)
  117. Thrombin-bound conformation of a cyclic anticoagulant peptide using transferred nuclear Overhauser effect (NOE), distance geometry, and NOE simulations. Ning Q, Ripoll DR, Szewczuk Z, Konishi Y, Ni F. Biopolymers 34 1125-1137 (1994)
  118. Canonical or noncanonical? Structural plasticity of serine protease-binding loops in Kunitz-STI protease inhibitors. Guerra Y, Armijos-Jaramillo V, Pons T, Tejera E, Berry C. Protein Sci 32 e4570 (2023)
  119. From haemadin to haemanorm: Synthesis and characterization of full-length haemadin from the leech Haemadipsa sylvestris and of a novel bivalent, highly potent thrombin inhibitor (haemanorm). Acquasaliente L, Pierangelini A, Pagotto A, Pozzi N, De Filippis V. Protein Sci 32 e4825 (2023)
  120. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition. Roddick LA, Bhakta V, Sheffield WP. BMC Biochem. 14 31 (2013)
  121. Modifying the substrate specificity of Carcinoscorpius rotundicauda serine protease inhibitor domain 1 to target thrombin. Giri PK, Tang X, Thangamani S, Shenoy RT, Ding JL, Swaminathan K, Sivaraman J. PLoS ONE 5 e15258 (2010)
  122. Study on the activity of recombinant mutant tissue-type plasminogen activator fused with the C-terminal fragment of hirudin. Ren K, Gong H, Hu L, He K, Yu A, Hu S, Liang S, Zhou C, Wu C. J Thromb Thrombolysis 52 880-888 (2021)
  123. A factor XIa-activatable hirudin-albumin fusion protein reduces thrombosis in mice without promoting blood loss. Sheffield WP, Eltringham-Smith LJ, Bhakta V. BMC Biotechnol. 18 21 (2018)
  124. Cloning, characterization, and heterologous expression of a candidate Hirudin gene from the salivary gland transcriptome of Hirudo nipponia. Shi P, Wei J, You H, Chen S, Tan F, Lu Z. Sci Rep 13 4943 (2023)
  125. Deciphering Conformational Changes Associated with the Maturation of Thrombin Anion Binding Exosite I. Billur R, Ban D, Sabo TM, Maurer MC. Biochemistry 56 6343-6354 (2017)
  126. Diselenide crosslinks for enhanced and simplified oxidative protein folding. Mousa R, Hidmi T, Pomyalov S, Lansky S, Khouri L, Shalev DE, Shoham G, Metanis N. Commun Chem 4 30 (2021)
  127. Hirudin as a novel fusion tag for efficient production of lunasin in Escherichia coli. Tian Q, Zhang P, Gao Z, Li H, Bai Z, Tan S. Prep. Biochem. Biotechnol. 47 619-626 (2017)
  128. Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Cheng S, Tu M, Chen H, Xu Z, Wang Z, Liu H, Zhao G, Zhu B, Du M. Food Funct 9 6391-6400 (2018)
  129. Network pharmacology study on the potential effect mechanism of Chuanzhi Tongluo Capsule in the treatment of cerebral infarction. Ma S, Fan W, Zhang J. Medicine (Baltimore) 101 e30916 (2022)
  130. Case Reports Prolonged Bleeding after a Single Leech Application in Pediatric Hand Surgery. Kotick JD, Taghinia A. J Hand Microsurg 9 98-100 (2017)
  131. Short tail stories: the hirudin-like factors HLF6 and HLF7 of the Asian medicinal leech, Hirudinaria manillensis. Müller C, Eickelmann C, Sponholz D, Hildebrandt JP. Parasitol Res 120 3761-3769 (2021)
  132. The active site region plays a critical role in Na+ binding to thrombin. Pelc LA, Koester SK, Kukla CR, Chen Z, Di Cera E. J Biol Chem 298 101458 (2022)
  133. The hirudin-like factors HLF3 and HLF4-hidden hirudins of European medicinal leeches. Müller C, Lukas P, Sponholz D, Hildebrandt JP. Parasitol Res 119 1767-1775 (2020)
  134. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I. Billur R, Sabo TM, Maurer MC. Biochemistry 58 1048-1060 (2019)
  135. Transcriptomic Analysis of the Influence of Methanol Assimilation on the Gene Expression in the Recombinant Pichia pastoris Producing Hirudin Variant 3. Li T, Ma J, Xu Z, Wang S, Wang N, Shao S, Yang W, Huang L, Liu Y. Genes (Basel) 10 (2019)
  136. Historical Article Vincenzo Pavone: Friend, mentor and inspiring scientist. Nastri F, Maglio O, Lombardi A. Biopolymers 109 e23234 (2018)
  137. [Biotechnological production of recombinant analogs of hirudin-1 from Hirudo medicinalis]. Kostromina MA, Esipov RS, Miroshnikov AI. Bioorg. Khim. 38 166-176 (2012)


Related citations provided by authors (2)

  1. The Structure of a Complex of Recombinant Hirudin and Human Alpha-Thrombin. Rydel TJ, Ravichandran KG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton II JW Science 249 277- (1990)
  2. The Refined 1.9 Angstroms Crystal Structure of Human Alpha-Thrombin: Interaction with D-Phe-Pro-Arg Chloromethylketone and Significance of the Tyr-Pro-Pro-Trp Insertion Segment. Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J EMBO J. 8 3467- (1989)