4bm9 Citations

Structure of the human Parkin ligase domain in an autoinhibited state.

OpenAccess logo EMBO J 32 2099-112 (2013)
Cited: 204 times
EuropePMC logo PMID: 23727886

Abstract

Mutations in the protein Parkin are associated with Parkinson's disease (PD), the second most common neurodegenerative disease in men. Parkin is an E3 ubiquitin (Ub) ligase of the structurally uncharacterized RING-in-between-RING(IBR)-RING (RBR) family, which, in an HECT-like fashion, forms a catalytic thioester intermediate with Ub. We here report the crystal structure of human Parkin spanning the Unique Parkin domain (UPD, also annotated as RING0) and RBR domains, revealing a tightly packed structure with unanticipated domain interfaces. The UPD adopts a novel elongated Zn-binding fold, while RING2 resembles an IBR domain. Two key interactions keep Parkin in an autoinhibited conformation. A linker that connects the IBR with the RING2 over a 50-Å distance blocks the conserved E2∼Ub binding site of RING1. RING2 forms a hydrophobic interface with the UPD, burying the catalytic Cys431, which is part of a conserved catalytic triad. Opening of intra-domain interfaces activates Parkin, and enables Ub-based suicide probes to modify Cys431. The structure further reveals a putative phospho-peptide docking site in the UPD, and explains many PD-causing mutations.

Reviews - 4bm9 mentioned but not cited (5)

  1. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Spratt DE, Walden H, Shaw GS. Biochem J 458 421-437 (2014)
  2. Parkin structure and function. Seirafi M, Kozlov G, Gehring K. FEBS J 282 2076-2088 (2015)
  3. Activation of the E3 ubiquitin ligase Parkin. Caulfield TR, Fiesel FC, Springer W. Biochem Soc Trans 43 269-274 (2015)
  4. Managing risky assets - mitophagy in vivo. Narendra DP. J Cell Sci 134 jcs240465 (2021)
  5. Huntingtin Ubiquitination Mechanisms and Novel Possible Therapies to Decrease the Toxic Effects of Mutated Huntingtin. Fiorillo A, Morea V, Colotti G, Ilari A. J Pers Med 11 1309 (2021)

Articles - 4bm9 mentioned but not cited (8)

  1. Mechanism of phospho-ubiquitin-induced PARKIN activation. Wauer T, Simicek M, Schubert A, Komander D. Nature 524 370-374 (2015)
  2. Structure of the human Parkin ligase domain in an autoinhibited state. Wauer T, Komander D. EMBO J 32 2099-2112 (2013)
  3. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. Caulfield TR, Fiesel FC, Moussaud-Lamodière EL, Dourado DF, Flores SC, Springer W. PLoS Comput Biol 10 e1003935 (2014)
  4. Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin. Fiesel FC, Caulfield TR, Moussaud-Lamodière EL, Ogaki K, Dourado DF, Flores SC, Ross OA, Springer W. Hum Mutat 36 774-786 (2015)
  5. Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Oikawa D, Sato Y, Ohtake F, Komakura K, Hanada K, Sugawara K, Terawaki S, Mizukami Y, Phuong HT, Iio K, Obika S, Fukushi M, Irie T, Tsuruta D, Sakamoto S, Tanaka K, Saeki Y, Fukai S, Tokunaga F. Commun Biol 3 163 (2020)
  6. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Kostrhon S, Prabu JR, Baek K, Horn-Ghetko D, von Gronau S, Klügel M, Basquin J, Alpi AF, Schulman BA. Nat Chem Biol 17 1075-1083 (2021)
  7. The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Wang XS, Cotton TR, Trevelyan SJ, Richardson LW, Lee WT, Silke J, Lechtenberg BC. Nat Commun 14 168 (2023)
  8. Molecular docking analysis of phytochemicals from ethanolic extract of crescentia cujete with the auto inhibited parkin catalytic domain. Anitha P, Kumar PK, Shanmughavel P, Nazeema TH, Lalitha G. Bioinformation 16 189-195 (2020)


Reviews citing this publication (90)

  1. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Pickrell AM, Youle RJ. Neuron 85 257-273 (2015)
  2. Ubiquitin modifications. Swatek KN, Komander D. Cell Res 26 399-422 (2016)
  3. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Pickles S, Vigié P, Youle RJ. Curr Biol 28 R170-R185 (2018)
  4. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  5. New insights into ubiquitin E3 ligase mechanism. Berndsen CE, Wolberger C. Nat Struct Mol Biol 21 301-307 (2014)
  6. Molecular mechanisms and physiological functions of mitophagy. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. EMBO J 40 e104705 (2021)
  7. Building and decoding ubiquitin chains for mitophagy. Harper JW, Ordureau A, Heo JM. Nat Rev Mol Cell Biol 19 93-108 (2018)
  8. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  9. PINK1/Parkin-mediated mitophagy in mammalian cells. Eiyama A, Okamoto K. Curr Opin Cell Biol 33 95-101 (2015)
  10. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Durcan TM, Fon EA. Genes Dev 29 989-999 (2015)
  11. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Kocaturk NM, Gozuacik D. Front Cell Dev Biol 6 128 (2018)
  12. Self and nonself: how autophagy targets mitochondria and bacteria. Randow F, Youle RJ. Cell Host Microbe 15 403-411 (2014)
  13. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. Yamano K, Matsuda N, Tanaka K. EMBO Rep 17 300-316 (2016)
  14. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. Acta Neuropathol Commun 8 189 (2020)
  15. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Bingol B, Sheng M. Free Radic Biol Med 100 210-222 (2016)
  16. Organellophagy: eliminating cellular building blocks via selective autophagy. Okamoto K. J Cell Biol 205 435-445 (2014)
  17. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology? Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. J Parkinsons Dis 7 13-29 (2017)
  18. Expanding the ubiquitin code through post-translational modification. Herhaus L, Dikic I. EMBO Rep 16 1071-1083 (2015)
  19. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Schmidt MF, Gan ZY, Komander D, Dewson G. Cell Death Differ 28 570-590 (2021)
  20. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  21. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Mattiroli F, Sixma TK. Nat Struct Mol Biol 21 308-316 (2014)
  22. Parkin and mitochondrial quality control: toward assembling the puzzle. Winklhofer KF. Trends Cell Biol 24 332-341 (2014)
  23. RBR E3-ligases at work. Smit JJ, Sixma TK. EMBO Rep 15 142-154 (2014)
  24. RING-Between-RING E3 Ligases: Emerging Themes amid the Variations. Dove KK, Klevit RE. J Mol Biol 429 3363-3375 (2017)
  25. Mitochondrial quality control by the Pink1/Parkin system. Rüb C, Wilkening A, Voos W. Cell Tissue Res 367 111-123 (2017)
  26. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Barodia SK, Creed RB, Goldberg MS. Brain Res Bull 133 51-59 (2017)
  27. PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER-Mitochondria Contacts in Parkinson's Disease. Barazzuol L, Giamogante F, Brini M, Calì T. Int J Mol Sci 21 E1772 (2020)
  28. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. Kazlauskaite A, Muqit MM. FEBS J 282 215-223 (2015)
  29. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns. Walden H, Rittinger K. Nat Struct Mol Biol 25 440-445 (2018)
  30. Linear ubiquitin chains: enzymes, mechanisms and biology. Rittinger K, Ikeda F. Open Biol 7 170026 (2017)
  31. Back to the tubule: microtubule dynamics in Parkinson's disease. Pellegrini L, Wetzel A, Grannó S, Heaton G, Harvey K. Cell Mol Life Sci 74 409-434 (2017)
  32. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases. Vittal V, Stewart MD, Brzovic PS, Klevit RE. J Biol Chem 290 21244-21251 (2015)
  33. The critical roles of mitophagy in cerebral ischemia. Tang YC, Tian HX, Yi T, Chen HB. Protein Cell 7 699-713 (2016)
  34. The cell biology of Parkinson's disease. Panicker N, Ge P, Dawson VL, Dawson TM. J Cell Biol 220 e202012095 (2021)
  35. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Williams JA, Ding WX. Biol Chem 399 147-178 (2018)
  36. Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Iorio R, Celenza G, Petricca S. Cells 11 30 (2021)
  37. Bio-Zombie: the rise of pseudoenzymes in biology. Murphy JM, Farhan H, Eyers PA. Biochem Soc Trans 45 537-544 (2017)
  38. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Escobar-Henriques M, Joaquim M. Front Physiol 10 517 (2019)
  39. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Bayne AN, Trempe JF. Cell Mol Life Sci 76 4589-4611 (2019)
  40. Mitophagy and Oxidative Stress: The Role of Aging. De Gaetano A, Gibellini L, Zanini G, Nasi M, Cossarizza A, Pinti M. Antioxidants (Basel) 10 794 (2021)
  41. Parkin Regulation and Neurodegenerative Disorders. Zhang CW, Hang L, Yao TP, Lim KL. Front Aging Neurosci 7 248 (2015)
  42. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Xian H, Liou YC. Cell Death Differ 28 827-842 (2021)
  43. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. Matsuda N. J Biochem 159 379-385 (2016)
  44. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Alpi AF, Chaugule V, Walden H. Biochem J 473 3401-3419 (2016)
  45. Dynamic survey of mitochondria by ubiquitin. Escobar-Henriques M, Langer T. EMBO Rep 15 231-243 (2014)
  46. Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer. Weil R, Laplantine E, Curic S, Génin P. Front Immunol 9 1243 (2018)
  47. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. Fritsch LE, Moore ME, Sarraf SA, Pickrell AM. J Mol Biol 432 2510-2524 (2020)
  48. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem Soc Trans 44 212-227 (2016)
  49. Mitophagy in the Pathogenesis of Liver Diseases. Ke PY. Cells 9 E831 (2020)
  50. Targeting Pink1-Parkin-mediated mitophagy for treating liver injury. Williams JA, Ding WX. Pharmacol Res 102 264-269 (2015)
  51. Ubiquitin and Parkinson's disease through the looking glass of genetics. Walden H, Muqit MM. Biochem J 474 1439-1451 (2017)
  52. PGC-1s in the Spotlight with Parkinson's Disease. Piccinin E, Sardanelli AM, Seibel P, Moschetta A, Cocco T, Villani G. Int J Mol Sci 22 3487 (2021)
  53. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Choubey V, Zeb A, Kaasik A. Cells 11 38 (2021)
  54. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Trends Mol Med 28 836-849 (2022)
  55. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson's disease. Kamienieva I, Duszyński J, Szczepanowska J. Transl Neurodegener 10 5 (2021)
  56. Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Cotton TR, Lechtenberg BC. Biochem Soc Trans 48 1737-1750 (2020)
  57. Post translational modification of Parkin. Chakraborty J, Basso V, Ziviani E. Biol Direct 12 6 (2017)
  58. The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis. Salazar C, Ruiz-Hincapie P, Ruiz LM. Cells 7 E154 (2018)
  59. Pathologic and therapeutic implications for the cell biology of parkin. Charan RA, LaVoie MJ. Mol Cell Neurosci 66 62-71 (2015)
  60. Activating Autophagy as a Therapeutic Strategy for Parkinson's Disease. Fowler AJ, Moussa CE. CNS Drugs 32 1-11 (2018)
  61. Decoding the messaging of the ubiquitin system using chemical and protein probes. Henneberg LT, Schulman BA. Cell Chem Biol 28 889-902 (2021)
  62. Role of Mitofusins and Mitophagy in Life or Death Decisions. Joaquim M, Escobar-Henriques M. Front Cell Dev Biol 8 572182 (2020)
  63. The ubiquitin ligation machinery in the defense against bacterial pathogens. Tripathi-Giesgen I, Behrends C, Alpi AF. EMBO Rep 22 e52864 (2021)
  64. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment. Chin LS, Li L. Transl Neurodegener 5 1 (2016)
  65. PINK1: A Bridge between Mitochondria and Parkinson's Disease. Gonçalves FB, Morais VA. Life (Basel) 11 371 (2021)
  66. Compact Parkin only: insights into the structure of an autoinhibited ubiquitin ligase. Byrd RA, Weissman AM. EMBO J 32 2087-2089 (2013)
  67. Noncovalent Ubiquitin Interactions Regulate the Catalytic Activity of Ubiquitin Writers. Wright JD, Mace PD, Day CL. Trends Biochem Sci 41 924-937 (2016)
  68. Therapeutic targeting of mitophagy in Parkinson's disease. Masaldan S, Callegari S, Dewson G. Biochem Soc Trans 50 783-797 (2022)
  69. Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. Kumar R, Reichert AS. Int J Mol Sci 22 4363 (2021)
  70. Parkin, an E3 Ubiquitin Ligase, Plays an Essential Role in Mitochondrial Quality Control in Parkinson's Disease. Wang XL, Feng ST, Wang ZZ, Yuan YH, Chen NH, Zhang Y. Cell Mol Neurobiol 41 1395-1411 (2021)
  71. The Transcription Factor Function of Parkin: Breaking the Dogma. Alves da Costa C, Duplan E, Rouland L, Checler F. Front Neurosci 12 965 (2018)
  72. Molecular basis for specificity of the Met1-linked polyubiquitin signal. Elliott PR. Biochem Soc Trans 44 1581-1602 (2016)
  73. The Effects of Variants in the Parkin, PINK1, and DJ-1 Genes along with Evidence for their Pathogenicity. Hauser DN, Primiani CT, Cookson MR. Curr Protein Pept Sci 18 702-714 (2017)
  74. Deubiquitinating Enzymes in Parkinson's Disease. Chakraborty J, Ziviani E. Front Physiol 11 535 (2020)
  75. Protein clearance strategies for disease intervention. Hommen F, Bilican S, Vilchez D. J Neural Transm (Vienna) 129 141-172 (2022)
  76. PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Han R, Liu Y, Li S, Li XJ, Yang W. Autophagy 19 1396-1405 (2023)
  77. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao HL. Clin Transl Med 13 e1204 (2023)
  78. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Yang X, Zhang R, Nakahira K, Gu Z. Annu Rev Nutr 39 201-226 (2019)
  79. Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease. Corti O. Neurotox Res 36 292-305 (2019)
  80. Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Zeng K, Yu X, Mahaman YAR, Wang JZ, Liu R, Li Y, Wang X. Transl Neurodegener 11 32 (2022)
  81. Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. Patel J, Panicker N, Dawson VL, Dawson TM. CNS Drugs 36 1249-1267 (2022)
  82. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Front Immunol 13 793610 (2022)
  83. Mitochondrial autophagy in the sleeping brain. Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Front Cell Dev Biol 10 956394 (2022)
  84. Mitophagy in atherosclerosis: from mechanism to therapy. Zhang Y, Weng J, Huan L, Sheng S, Xu F. Front Immunol 14 1165507 (2023)
  85. Structural studies of parkin and sacsin: Mitochondrial dynamics in neurodegenerative diseases. Li X, Gehring K. Mov Disord 30 1610-1619 (2015)
  86. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)
  87. Methods to detect mitophagy in neurons during disease. Carter FE, Moore ME, Pickrell AM. J Neurosci Methods 325 108351 (2019)
  88. Proteomics; applications in familial Parkinson's disease. Li Y, Cookson MR. J Neurochem 151 446-458 (2019)
  89. Targeting Deubiquitinating Enzymes (DUBs) That Regulate Mitophagy via Direct or Indirect Interaction with Parkin. Tsefou E, Ketteler R. Int J Mol Sci 23 12105 (2022)
  90. The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. Suresh K, Mattern M, Goldberg MS, Butt TR. Neuromolecular Med 25 313-329 (2023)

Articles citing this publication (101)

  1. Ubiquitin is phosphorylated by PINK1 to activate parkin. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N. Nature 510 162-166 (2014)
  2. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. J Cell Biol 205 143-153 (2014)
  3. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM. Biochem J 460 127-139 (2014)
  4. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW. Mol Cell 56 360-375 (2014)
  5. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. Durcan TM, Tang MY, Pérusse JR, Dashti EA, Aguileta MA, McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, Fon EA. EMBO J 33 2473-2491 (2014)
  6. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D. EMBO J 34 307-325 (2015)
  7. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, Rinehart J, Schulman BA, Harper JW. Proc Natl Acad Sci U S A 112 6637-6642 (2015)
  8. Mechanism of parkin activation by PINK1. Gladkova C, Maslen SL, Skehel JM, Komander D. Nature 559 410-414 (2018)
  9. Phosphorylated ubiquitin chain is the genuine Parkin receptor. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N. J Cell Biol 209 111-128 (2015)
  10. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. Kazlauskaite A, Martínez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, Johnson C, Zhang J, Hope AG, Peggie M, Trost M, van Aalten DM, Alessi DR, Prescott AR, Knebel A, Walden H, Muqit MM. EMBO Rep 16 939-954 (2015)
  11. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, Christodoulou E, Howell S, Brown NR, Dikic I, Rittinger K. Nature 503 422-426 (2013)
  12. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N. J Biol Chem 288 22019-22032 (2013)
  13. A Ubl/ubiquitin switch in the activation of Parkin. Sauvé V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K. EMBO J 34 2492-2505 (2015)
  14. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, Tan IL, Turcan S, Veeriah S, Meng S, Viale A, Schumacher SE, Palmedo P, Beroukhim R, Chan TA. Nat Genet 46 588-594 (2014)
  15. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE, Barber KR, Shaw GS, Walden H. EMBO J 34 2506-2521 (2015)
  16. PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. Lee Y, Stevens DA, Kang SU, Jiang H, Lee YI, Ko HS, Scarffe LA, Umanah GE, Kang H, Ham S, Kam TI, Allen K, Brahmachari S, Kim JW, Neifert S, Yun SP, Fiesel FC, Springer W, Dawson VL, Shin JH, Dawson TM. Cell Rep 18 918-932 (2017)
  17. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ. Nature 529 546-550 (2016)
  18. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Shlevkov E, Kramer T, Schapansky J, LaVoie MJ, Schwarz TL. Proc Natl Acad Sci U S A 113 E6097-E6106 (2016)
  19. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y. PLoS Genet 10 e1004861 (2014)
  20. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM. Open Biol 4 130213 (2014)
  21. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. Lonskaya I, Hebron ML, Desforges NM, Schachter JB, Moussa CE. J Mol Med (Berl) 92 373-386 (2014)
  22. Mechanism of parkin activation by phosphorylation. Sauvé V, Sung G, Soya N, Kozlov G, Blaimschein N, Miotto LS, Trempe JF, Lukacs GL, Gehring K. Nat Struct Mol Biol 25 623-630 (2018)
  23. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. Kelsall IR, Duda DM, Olszewski JL, Hofmann K, Knebel A, Langevin F, Wood N, Wightman M, Schulman BA, Alpi AF. EMBO J 32 2848-2860 (2013)
  24. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. Geisler S, Vollmer S, Golombek S, Kahle PJ. J Cell Sci 127 3280-3293 (2014)
  25. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA. Nature 590 671-676 (2021)
  26. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R, Sundaramoorthy R, Knebel A, Shaw GS, Walden H. Nat Struct Mol Biol 24 475-483 (2017)
  27. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. Dove KK, Stieglitz B, Duncan ED, Rittinger K, Klevit RE. EMBO Rep 17 1221-1235 (2016)
  28. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Pao KC, Stanley M, Han C, Lai YC, Murphy P, Balk K, Wood NT, Corti O, Corvol JC, Muqit MM, Virdee S. Nat Chem Biol 12 324-331 (2016)
  29. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Tang MY, Vranas M, Vranas M, Krahn AI, Pundlik S, Trempe JF, Fon EA. Nat Commun 8 14697 (2017)
  30. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. Fiesel FC, Moussaud-Lamodière EL, Ando M, Springer W. J Cell Sci 127 3488-3504 (2014)
  31. Itch WW Domains Inhibit Its E3 Ubiquitin Ligase Activity by Blocking E2-E3 Ligase Trans-thiolation. Riling C, Kamadurai H, Kumar S, O'Leary CE, Wu KP, Manion EE, Ying M, Schulman BA, Oliver PM. J Biol Chem 290 23875-23887 (2015)
  32. Ubiquitination increases parkin activity to promote autophagic α-synuclein clearance. Lonskaya I, Desforges NM, Hebron ML, Moussa CE. PLoS One 8 e83914 (2013)
  33. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A, Hinkle JT, Akkentli F, Mao X, Xu E, Karuppagounder SS, Hsu ET, Kang SU, Pletnikova O, Troncoso J, Dawson VL, Dawson TM. Neuron 110 2422-2437.e9 (2022)
  34. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. Bernardini JP, Brouwer JM, Tan IK, Sandow JJ, Huang S, Stafford CA, Bankovacki A, Riffkin CD, Wardak AZ, Czabotar PE, Lazarou M, Dewson G. EMBO J 38 e99916 (2019)
  35. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Charan RA, Johnson BN, Zaganelli S, Nardozzi JD, LaVoie MJ. Cell Death Dis 5 e1313 (2014)
  36. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. Yamano K, Queliconi BB, Koyano F, Saeki Y, Hirokawa T, Tanaka K, Matsuda N. J Biol Chem 290 25199-25211 (2015)
  37. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Yin CL, Chen HI, Li LH, Chien YL, Liao HM, Chou MC, Chou WJ, Tsai WC, Chiu YN, Wu YY, Lo CZ, Wu JY, Chen YT, Gau SS. Mol Autism 7 23 (2016)
  38. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, Dittmar G, Clague MJ, Mayor U. Mol Neurodegener 12 29 (2017)
  39. Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. Smit JJ, van Dijk WJ, El Atmioui D, Merkx R, Ovaa H, Sixma TK. J Biol Chem 288 31728-31737 (2013)
  40. Structural Studies of HHARI/UbcH7∼Ub Reveal Unique E2∼Ub Conformational Restriction by RBR RING1. Dove KK, Olszewski JL, Martino L, Duda DM, Wu XS, Miller DJ, Reiter KH, Rittinger K, Schulman BA, Klevit RE. Structure 25 890-900.e5 (2017)
  41. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Yuan L, Lv Z, Atkison JH, Olsen SK. Nat Commun 8 211 (2017)
  42. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Im E, Yoo L, Hyun M, Shin WH, Chung KC. Open Biol 6 160193 (2016)
  43. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Klosowiak JL, Park S, Smith KP, French ME, Focia PJ, Freymann DM, Rice SE. Sci Rep 6 33019 (2016)
  44. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, Silani V, Sato S, Hattori N, Mazzanti M, Chieregatti E, Mulle C, Passafaro M, Sassone J. Nat Commun 5 5182 (2014)
  45. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. López-Doménech G, Howden JH, Covill-Cooke C, Morfill C, Patel JV, Bürli R, Crowther D, Birsa N, Brandon NJ, Kittler JT. EMBO J 40 e100715 (2021)
  46. Short mitochondrial ARF triggers Parkin/PINK1-dependent mitophagy. Grenier K, Kontogiannea M, Fon EA. J Biol Chem 289 29519-29530 (2014)
  47. Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Tokarew JM, El-Kodsi DN, Lengacher NA, Fehr TK, Nguyen AP, Shutinoski B, O'Nuallain B, Jin M, Khan JM, Ng ACH, Li J, Jiang Q, Zhang M, Wang L, Sengupta R, Barber KR, Tran A, Im DS, Callaghan S, Park DS, Zandee S, Dong X, Scherzer CR, Prat A, Tsai EC, Takanashi M, Hattori N, Chan JA, Zecca L, West AB, Holmgren A, Puente L, Shaw GS, Toth G, Woulfe JM, Taylor P, Tomlinson JJ, Schlossmacher MG. Acta Neuropathol 141 725-754 (2021)
  48. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity. Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J. J Biol Chem 291 1803-1816 (2016)
  49. Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors. Lee J, Ham S, Lee MH, Kim SJ, Park JH, Lee SE, Chang JY, Joung KH, Kim TY, Kim JM, Sul HJ, Kweon GR, Jo YS, Kim KS, Shong YK, Gasparre G, Chung JK, Porcelli AM, Shong M. Carcinogenesis 36 1407-1418 (2015)
  50. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation. Condos TE, Dunkerley KM, Freeman EA, Barber KR, Aguirre JD, Chaugule VK, Xiao Y, Konermann L, Walden H, Shaw GS. EMBO J 37 e100014 (2018)
  51. Structural insights into ubiquitin phosphorylation by PINK1. Okatsu K, Sato Y, Yamano K, Matsuda N, Negishi L, Takahashi A, Yamagata A, Goto-Ito S, Mishima M, Ito Y, Oka T, Tanaka K, Fukai S. Sci Rep 8 10382 (2018)
  52. The PINK1 kinase-driven ubiquitin ligase Parkin promotes mitochondrial protein import through the presequence pathway in living cells. Jacoupy M, Hamon-Keromen E, Ordureau A, Erpapazoglou Z, Coge F, Corvol JC, Nosjean O, Mannoury la Cour C, Millan MJ, Boutin JA, Harper JW, Brice A, Guedin D, Gautier CA, Corti O. Sci Rep 9 11829 (2019)
  53. Ataxia-telangiectasia mutated interacts with Parkin and induces mitophagy independent of kinase activity. Evidence from mantle cell lymphoma. Sarkar A, Stellrecht CM, Vangapandu HV, Ayres M, Kaipparettu BA, Park JH, Balakrishnan K, Burks JK, Pandita TK, Hittelman WN, Neelapu SS, Gandhi V. Haematologica 106 495-512 (2021)
  54. Pink1, the first ubiquitin kinase. Zheng X, Hunter T. EMBO J 33 1621-1623 (2014)
  55. UbMES and UbFluor: Novel probes for ring-between-ring (RBR) E3 ubiquitin ligase PARKIN. Park S, Foote PK, Krist DT, Rice SE, Statsyuk AV. J Biol Chem 292 16539-16553 (2017)
  56. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Erdős G, Mészáros B, Reichmann D, Dosztányi Z. Proteomics 19 e1800070 (2019)
  57. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Callegari S, Oeljeklaus S, Warscheid B, Dennerlein S, Thumm M, Rehling P, Dudek J. Autophagy 13 201-211 (2017)
  58. Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly. Deol KK, Eyles SJ, Strieter ER. J Am Soc Mass Spectrom 31 1132-1139 (2020)
  59. Parkinson's Disease in Saudi Patients: A Genetic Study. Al-Mubarak BR, Bohlega SA, Alkhairallah TS, Magrashi AI, AlTurki MI, Khalil DS, AlAbdulaziz BS, Abou Al-Shaar H, Mustafa AE, Alyemni EA, Alsaffar BA, Tahir AI, Al Tassan NA. PLoS One 10 e0135950 (2015)
  60. DUBs counteract parkin for efficient mitophagy. Dikic I, Bremm A. EMBO J 33 2442-2443 (2014)
  61. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR. Oregioni A, Stieglitz B, Kelly G, Rittinger K, Frenkiel T. Sci Rep 7 43748 (2017)
  62. Mdm2 enhances ligase activity of parkin and facilitates mitophagy. Kook S, Zhan X, Thibeault K, Ahmed MR, Gurevich VV, Gurevich EV. Sci Rep 10 5028 (2020)
  63. Single-Domain Antibodies as Crystallization Chaperones to Enable Structure-Based Inhibitor Development for RBR E3 Ubiquitin Ligases. Tsai YI, Johansson H, Dixon D, Martin S, Chung CW, Clarkson J, House D, Rittinger K. Cell Chem Biol 27 83-93.e9 (2020)
  64. The Michael J. Fox Foundation for Parkinson's Research Strategy to Advance Therapeutic Development of PINK1 and Parkin. Padmanabhan S, Polinski NK, Menalled LB, Baptista MAS, Fiske BK. Biomolecules 9 E296 (2019)
  65. Dual Function of Phosphoubiquitin in E3 Activation of Parkin. Walinda E, Morimoto D, Sugase K, Shirakawa M. J Biol Chem 291 16879-16891 (2016)
  66. Phosphorylated ubiquitin: a new shade of PINK1 in Parkin activation. Sauvé V, Gehring K. Cell Res 24 1025-1026 (2014)
  67. Structural basis for feedforward control in the PINK1/Parkin pathway. Sauvé V, Sung G, MacDougall EJ, Kozlov G, Saran A, Fakih R, Fon EA, Gehring K. EMBO J 41 e109460 (2022)
  68. Parkin gene mutations are not common, but its epigenetic inactivation is a frequent event and predicts poor survival in advanced breast cancer patients. Wahabi K, Perwez A, Kamarudheen S, Bhat ZI, Mehta A, Rizvi MMA. BMC Cancer 19 820 (2019)
  69. Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation. Bowman J, Rodgers MA, Shi M, Amatya R, Hostager B, Iwai K, Gao SJ, Jung JU. mBio 6 e01777-15 (2015)
  70. Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Qin X, Wang R, Xu H, Tu L, Chen H, Li H, Liu N, Wang J, Li S, Yin F, Xu N, Li Z. Autophagy 18 2178-2197 (2022)
  71. Discovery of small-molecule positive allosteric modulators of Parkin E3 ligase. Shlevkov E, Murugan P, Montagna D, Stefan E, Hadzipasic A, Harvey JS, Kumar PR, Entova S, Bansal N, Bickford S, Wong LY, Hirst WD, Weihofen A, Silvian LF. iScience 25 103650 (2022)
  72. Network metrics, structural dynamics and density functional theory calculations identified a novel Ursodeoxycholic Acid derivative against therapeutic target Parkin for Parkinson's disease. Naha A, Banerjee S, Debroy R, Basu S, Ashok G, Priyamvada P, Kumar H, Preethi AR, Singh H, Anbarasu A, Ramaiah S. Comput Struct Biotechnol J 20 4271-4287 (2022)
  73. Selective localization of Mfn2 near PINK1 enables its preferential ubiquitination by Parkin on mitochondria. Vranas M, Vranas M, Lu Y, Rasool S, Croteau N, Krett JD, Sauvé V, Gehring K, Fon EA, Durcan TM, Trempe JF. Open Biol 12 210255 (2022)
  74. Structure-based design and characterization of Parkin-activating mutations. Stevens MU, Croteau N, Eldeeb MA, Antico O, Zeng ZW, Toth R, Durcan TM, Springer W, Fon EA, Muqit MM, Trempe JF. Life Sci Alliance 6 e202201419 (2023)
  75. A polyubiquitin chain reaction: parkin recruitment to damaged mitochondria. Riley BE, Olzmann JA. PLoS Genet 11 e1004952 (2015)
  76. The KM-parkin-DB: A Sub-set MutationView Database Specialized for PARK2 (PARKIN) Variants. Mitsuyama S, Ohtsubo M, Minoshima S, Shimizu N. Hum Mutat 36 E2430-40 (2015)
  77. Genome-wide identification and characterization of RBR ubiquitin ligase genes in soybean. Chen P, Zhang X, Zhao T, Li Y, Gai J. PLoS One 9 e87282 (2014)
  78. Impact of different ionization states of phosphorylated Serine-65 on ubiquitin structure and interactions. Kazansky Y, Lai MY, Singh RK, Fushman D. Sci Rep 8 2651 (2018)
  79. pUBLically unzipping Parkin: how phosphorylation exposes a ligase bit by bit. Dove KK, Klevit RE, Rittinger K. EMBO J 34 2486-2488 (2015)
  80. Differential expression of PARK2 splice isoforms in an in vitro model of dopaminergic-like neurons exposed to toxic insults mimicking Parkinson's disease. La Cognata V, Maugeri G, D'Amico AG, Saccone S, Federico C, Cavallaro S, D'Agata V. J Cell Biochem 119 1062-1073 (2018)
  81. Genetic and epigenetic alterations affecting PARK-2 expression in cervical neoplasm among North Indian patients. Naseem A, Bhat ZI, Kalaiarasan P, Kumar B, Gandhi G, Rizvi MMA. Tumour Biol 39 1010428317703635 (2017)
  82. Neurological disorders: Quality-control pathway unlocked. Abeliovich A. Nature 510 44-45 (2014)
  83. Parkin truncating variants result in a loss-of-function phenotype. Santos M, Morais S, Pereira C, Sequeiros J, Alonso I. Sci Rep 9 16150 (2019)
  84. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas. D'Amico AG, Maugeri G, Reitano R, Cavallaro S, D'Agata V. Protein J 35 354-362 (2016)
  85. The Ku-Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge. Kaur G, Subramanian S. J Struct Biol 191 281-289 (2015)
  86. Distinct phosphorylation signals drive acceptor versus free ubiquitin chain targeting by parkin. Dunkerley KM, Rintala-Dempsey AC, Salzano G, Tadayon R, Hadi D, Barber KR, Walden H, Shaw GS. Biochem J 479 751-766 (2022)
  87. How phosphoubiquitin activates Parkin. Zheng X, Hunter T. Cell Res 25 1087-1088 (2015)
  88. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin. Qiu S, Zhu S, Xu S, Han Y, Liu W, Zuo J. Mol Med Rep 16 4561-4568 (2017)
  89. Structure of the second phosphoubiquitin-binding site in parkin. Fakih R, Sauvé V, Gehring K. J Biol Chem 298 102114 (2022)
  90. Switching on ubiquitylation by phosphorylating a ubiquitous activator. Shaw GS. Biochem J 460 e1-3 (2014)
  91. PARK2 Microdeletion or Duplications Have Been Implicated in Different Neurological Disorders Including Early Onset Parkinson Disease. Ahmad A, Nkosi D, Iqbal MA. Genes (Basel) 14 600 (2023)
  92. MALDI-TOF Mass Spectrometry for interrogating ubiquitin enzymes. De Cesare V. Front Mol Biosci 10 1184934 (2023)
  93. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Wang H, Cheung F, Stoll AC, Rockwell P, Figueiredo-Pereira ME. Biochim Biophys Acta Mol Basis Dis 1865 1436-1450 (2019)
  94. The M458L missense mutation disrupts the catalytic properties of Parkin. Do YJ, Yun SY, Park MY, Kim E. FEBS Lett 592 78-88 (2018)
  95. Will crystal parkin help in understanding the future of Parkinson's disease? Olszewska DA, Lynch T. Front Neurol 6 35 (2015)
  96. A mutational atlas for Parkin proteostasis. Clausen L, Voutsinos V, Cagiada M, Johansson KE, Grønbæk-Thygesen M, Nariya S, Powell RL, Have MKN, Oestergaard VH, Stein A, Fowler DM, Lindorff-Larsen K, Hartmann-Petersen R. Nat Commun 15 1541 (2024)
  97. Activation of Ca2+ phosphatase Calcineurin regulates Parkin translocation to mitochondria and mitophagy in flies. Marchesan E, Nardin A, Mauri S, Bernardo G, Chander V, Di Paola S, Chinellato M, von Stockum S, Chakraborty J, Herkenne S, Basso V, Schrepfer E, Marin O, Cendron L, Medina DL, Scorrano L, Ziviani E. Cell Death Differ 31 217-238 (2024)
  98. Characterisation of HOIP RBR E3 ligase conformational dynamics using integrative modelling. Kausas M, Esposito D, Rittinger K, Fraternali F. Sci Rep 12 15201 (2022)
  99. Design and high-throughput implementation of MALDI-TOF/MS-based assays for Parkin E3 ligase activity. Traynor R, Moran J, Stevens M, Antico O, Knebel A, Behrouz B, Merchant K, Hastie CJ, Davies P, Muqit MMK, De Cesare V. Cell Rep Methods 4 100712 (2024)
  100. In Silico Investigation of Parkin-Activating Mutations Using Simulations and Network Modeling. Islam NN, Weber CA, Coban M, Cocker LT, Fiesel FC, Springer W, Caulfield TR. Biomolecules 14 365 (2024)
  101. Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family. Kane EI, Beasley SA, Schafer JM, Bohl JE, Lee YS, Rich KJ, Bosia EF, Spratt DE. Biosci Rep 42 BSR20221036 (2022)