4a2n Citations

Mechanism of isoprenylcysteine carboxyl methylation from the crystal structure of the integral membrane methyltransferase ICMT.

Mol Cell 44 997-1004 (2011)
Cited: 39 times
EuropePMC logo PMID: 22195972

Abstract

The posttranslational modification of C-terminal CAAX motifs in proteins such as Ras, most Rho GTPases, and G protein γ subunits, plays an essential role in determining their subcellular localization and correct biological function. An integral membrane methyltransferase, isoprenylcysteine carboxyl methyltransferase (ICMT), catalyzes the final step of CAAX processing after prenylation of the cysteine residue and endoproteolysis of the -AAX motif. We have determined the crystal structure of a prokaryotic ICMT ortholog, revealing a markedly different architecture from conventional methyltransferases that utilize S-adenosyl-L-methionine (SAM) as a cofactor. ICMT comprises a core of five transmembrane α helices and a cofactor-binding pocket enclosed within a highly conserved C-terminal catalytic subdomain. A tunnel linking the reactive methyl group of SAM to the inner membrane provides access for the prenyl lipid substrate. This study explains how an integral membrane methyltransferase achieves recognition of both a hydrophilic cofactor and a lipophilic prenyl group attached to a polar protein substrate.

Reviews - 4a2n mentioned but not cited (1)

  1. Structural basis for catalysis at the membrane-water interface. Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1368-1385 (2017)

Articles - 4a2n mentioned but not cited (16)

  1. Cardiolipin Interactions with Proteins. Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J. Biophys. J. 109 1282-1294 (2015)
  2. An Integrated Framework Advancing Membrane Protein Modeling and Design. Alford RF, Koehler Leman J, Weitzner BD, Duran AM, Tilley DC, Elazar A, Gray JJ. PLoS Comput. Biol. 11 e1004398 (2015)
  3. BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices. Weiner BE, Woetzel N, Karakaş M, Alexander N, Meiler J. Structure 21 1107-1117 (2013)
  4. BCL::Fold--protein topology determination from limited NMR restraints. Weiner BE, Alexander N, Akin LR, Woetzel N, Karakas M, Meiler J. Proteins 82 587-595 (2014)
  5. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Li X, Roberti R, Blobel G. Nature 517 104-107 (2015)
  6. Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach. Gana R, Rao S, Huang H, Wu C, Vasudevan S. BMC Struct. Biol. 13 6 (2013)
  7. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Acta Crystallogr D Struct Biol 72 359-374 (2016)
  8. Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints. Li B, Mendenhall J, Nguyen ED, Weiner BE, Fischer AW, Meiler J. Proteins 85 1212-1221 (2017)
  9. Characterization of 15-cis-ζ-Carotene Isomerase Z-ISO in Cultivated and Wild Tomato Species Differing in Ripe Fruit Pigmentation. Efremov GI, Shchennikova AV, Kochieva EZ. Plants (Basel) 10 2365 (2021)
  10. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem. Rev. 119 5607-5774 (2019)
  11. Mutational analysis of the integral membrane methyltransferase isoprenylcysteine carboxyl methyltransferase (ICMT) reveals potential substrate binding sites. Diver MM, Long SB. J. Biol. Chem. 289 26007-26020 (2014)
  12. Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. Modlin SJ, Elghraoui A, Gunasekaran D, Zlotnicki AM, Dillon NA, Dhillon N, Kuo N, Robinhold C, Chan CK, Baughn AD, Valafar F. mSystems 6 e0067321 (2021)
  13. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta. Lapin J, Nevzorov AA. J Biomol NMR 73 229-244 (2019)
  14. Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT. Diver MM, Pedi L, Koide A, Koide S, Long SB. Nature 553 526-529 (2018)
  15. The topology of the ER-resident phospholipid methyltransferase Opi3 of Saccharomyces cerevisiae is consistent with in trans catalysis. Pawlik G, Renne MF, Kol MA, de Kroon AIPM. J Biol Chem 295 2473-2482 (2020)
  16. Chemical biology and medicinal chemistry of RNA methyltransferases. Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Nucleic Acids Res 50 4216-4245 (2022)


Reviews citing this publication (6)

  1. Protein prenylation: unique fats make their mark on biology. Wang M, Casey PJ. Nat. Rev. Mol. Cell Biol. 17 110-122 (2016)
  2. Non-covalent binding of membrane lipids to membrane proteins. Yeagle PL. Biochim. Biophys. Acta 1838 1548-1559 (2014)
  3. Protein post-translational modifications: In silico prediction tools and molecular modeling. Audagnotto M, Dal Peraro M. Comput Struct Biotechnol J 15 307-319 (2017)
  4. Protein and nucleic acid methylating enzymes: mechanisms and regulation. Le DD, Fujimori DG. Curr Opin Chem Biol 16 507-515 (2012)
  5. Methyltransferases: Functions and Applications. Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn PL, Hanefeld U. Chembiochem 23 e202200212 (2022)
  6. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Crit. Rev. Biochem. Mol. Biol. 53 279-310 (2018)

Articles citing this publication (16)

  1. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ. Dharmaiah S, Bindu L, Tran TH, Gillette WK, Frank PH, Ghirlando R, Nissley DV, Esposito D, McCormick F, Stephen AG, Simanshu DK. Proc. Natl. Acad. Sci. U.S.A. 113 E6766-E6775 (2016)
  2. Research Support, Non-U.S. Gov't Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture. Baehr W. Invest. Ophthalmol. Vis. Sci. 55 8653-8666 (2014)
  3. Discovery of the β-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, Crécy-Lagard Vd, Suzuki T. Nucleic Acids Res. 42 9350-9365 (2014)
  4. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Lau HY, Ramanujulu PM, Guo D, Yang T, Wirawan M, Casey PJ, Go ML, Wang M. Cancer Biol. Ther. 15 1280-1291 (2014)
  5. Human C6orf211 encodes Armt1, a protein carboxyl methyltransferase that targets PCNA and is linked to the DNA damage response. Perry JJ, Ballard GD, Albert AE, Dobrolecki LE, Malkas LH, Hoelz DJ. Cell Rep 10 1288-1296 (2015)
  6. Evaluation of substrate and inhibitor binding to yeast and human isoprenylcysteine carboxyl methyltransferases (Icmts) using biotinylated benzophenone-containing photoaffinity probes. Hahne K, Vervacke JS, Shrestha L, Donelson JL, Gibbs RA, Distefano MD, Hrycyna CA. Biochem. Biophys. Res. Commun. 423 98-103 (2012)
  7. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling. Chao YJ, Chang WH, Ting HC, Chao WT, Hsu YH. PLoS ONE 9 e113680 (2014)
  8. Topology of the yeast Ras converting enzyme as inferred from cysteine accessibility studies. Hildebrandt ER, Davis DM, Deaton J, Krishnankutty RK, Lilla E, Schmidt WK. Biochemistry 52 6601-6614 (2013)
  9. Identification and engineering of regulation-related genes toward improved kasugamycin production. Zhu C, Kang Q, Bai L, Cheng L, Deng Z. Appl. Microbiol. Biotechnol. 100 1811-1821 (2016)
  10. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. Thweatt JL, Ferlez BH, Golbeck JH, Bryant DA. J. Biol. Chem. 292 1361-1373 (2017)
  11. N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding. Lowery JW, Amich JM, Andonian A, Rosen V. Cell. Mol. Life Sci. 71 3165-3172 (2014)
  12. Distinct functional relevance of dynamic GTPase cysteine methylation in fission yeast. Franco A, Soto T, Martín-García R, Madrid M, Vázquez-Marín B, Vicente-Soler J, Coll PM, Gacto M, Pérez P, Cansado J. Sci Rep 7 6057 (2017)
  13. Effects of isoprenylcysteine carboxylmethyltransferase silencing on the migration and invasion of tongue squamous cell carcinoma. Zhou N, Chi ZP, Li WJ, Zhao K, Wang SR, Wang QM, Tong L, He ZX, Han HY, Wang Y, Chen ZG. Hua Xi Kou Qiang Yi Xue Za Zhi 39 328-335 (2021)
  14. Non-Substrate Based, Small Molecule Inhibitors of the Human Isoprenylcysteine Carboxyl Methyltransferase. Butler KV, Bohn K, Hrycyna CA, Jin J. Medchemcomm 7 1016-1021 (2016)
  15. Impact of energy restriction during late gestation on the muscle and blood transcriptome of beef calves after preconditioning. Sanglard LP, Nascimento M, Moriel P, Sommer J, Ashwell M, Poore MH, Duarte MS, Serão NVL. BMC Genomics 19 702 (2018)
  16. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. Esposito S, Aversano R, Tripodi P, Carputo D. Plants (Basel) 10 1004 (2021)