4v24 Citations

Crystal Structure of Sphingosine Kinase 1 with PF-543.

ACS Med Chem Lett 5 1329-33 (2014)
Cited: 55 times
EuropePMC logo PMID: 25516793

Abstract

The most potent inhibitor of Sphingosine Kinase 1 (SPHK1) so far identified is PF-543. The crystal structure of SPHK1 in complex with inhibitor PF-543 to 1.8 Å resolution reveals the inhibitor bound in a bent conformation analogous to that expected of a bound sphingosine substrate but with a rotated head group. The structural data presented will aid in the design of SPHK1 and SPHK2 inhibitors with improved properties.

Reviews - 4v24 mentioned but not cited (3)

  1. Sphingolipid biosynthesis in man and microbes. Harrison PJ, Dunn TM, Campopiano DJ. Nat Prod Rep 35 921-954 (2018)
  2. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. Sandhu G, Thelma BK. Front Immunol 13 834247 (2022)
  3. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Ware TB, Hsu KL. Curr Opin Chem Biol 65 101-108 (2021)

Articles - 4v24 mentioned but not cited (12)

  1. Protocol: A simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis. Box MS, Coustham V, Dean C, Mylne JS. Plant Methods 7 7 (2011)
  2. Crystal Structure of Sphingosine Kinase 1 with PF-543. Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM. ACS Med Chem Lett 5 1329-1333 (2014)
  3. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. Eur J Med Chem 139 461-481 (2017)
  4. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. Khan FI, Lai D, Anwer R, Azim I, Khan MKA. J Enzyme Inhib Med Chem 35 172-186 (2020)
  5. In Silico Characterization of Structural Distinctions between Isoforms of Human and Mouse Sphingosine Kinases for Accelerating Drug Discovery. Worrell BL, Brown AM, Santos WL, Bevan DR. J Chem Inf Model 59 2339-2351 (2019)
  6. Celecoxib Blocks Vasculogenic Mimicry via an Off-Target Effect to Radiosensitize Lung Cancer Cells: An Experimental Study. Niu K, Chen XW, Qin Y, Zhang LP, Liao RX, Sun JG. Front Oncol 11 697227 (2021)
  7. Crystallographic and Theoretical Exploration of Weak Hydrogen Bonds in Arylmethyl N'-(adamantan-1-yl)piperidine-1-carbothioimidates and Molecular Docking Analysis. Al-Mutairi AA, Alagappan K, Blacque O, Al-Alshaikh MA, El-Emam AA, Percino MJ, Thamotharan S. ACS Omega 6 27026-27037 (2021)
  8. Design and Development of Novel Urea, Sulfonyltriurea, and Sulfonamide Derivatives as Potential Inhibitors of Sphingosine Kinase 1. Roy S, Mahapatra AD, Mohammad T, Gupta P, Alajmi MF, Hussain A, Rehman MT, Datta B, Hassan MI. Pharmaceuticals (Basel) 13 E118 (2020)
  9. Verification of the Necessity of the Tolyl Group of PF-543 for Sphingosine Kinase 1 Inhibitory Activity. Kim SB, Lee T, Moon HS, Ki SH, Oh YS, Lee JY, Kim SB, Park JE, Kwon Y, Kim S, Baek DJ, Park EY. Molecules 25 E2484 (2020)
  10. A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. Brown RDR, Veerman BEP, Oh J, Tate RJ, Torta F, Cunningham MR, Adams DR, Pyne S, Pyne NJ. J Biol Chem 296 100674 (2021)
  11. Structure-activity relationship studies and bioactivity evaluation of 1,2,3-triazole containing analogues as a selective sphingosine kinase-2 inhibitors. Tangadanchu VKR, Jiang H, Yu Y, Graham TJA, Liu H, Rogers BE, Gropler R, Perlmutter J, Tu Z. Eur J Med Chem 206 112713 (2020)
  12. Glycans Meet Sphingolipids: Structure-Based Design of Glycan Containing Analogues of a Sphingosine Kinase Inhibitor. Papakyriakou A, Cencetti F, Puliti E, Morelli L, Tricomi J, Bruni P, Compostella F, Richichi B. ACS Med Chem Lett 11 913-920 (2020)


Reviews citing this publication (13)

  1. Sphingolipid metabolism in cancer signalling and therapy. Ogretmen B. Nat Rev Cancer 18 33-50 (2018)
  2. The role of sphingosine-1-phosphate in inflammation and cancer progression. Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. Cancer Sci 109 3671-3678 (2018)
  3. Recent advances in the development of sphingosine kinase inhibitors. Pitman MR, Costabile M, Pitson SM. Cell Signal 28 1349-1363 (2016)
  4. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Adv Cancer Res 140 327-366 (2018)
  5. Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Pyne NJ, Adams DR, Pyne S. Trends Pharmacol Sci 38 581-591 (2017)
  6. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Evangelisti C, Evangelisti C, Buontempo F, Lonetti A, Orsini E, Chiarini F, Barata JT, Pyne S, Pyne NJ, Martelli AM. Leukemia 30 2142-2151 (2016)
  7. Sphingosine kinase inhibitors: a review of patent literature (2006-2015). Lynch KR, Thorpe SB, Santos WL. Expert Opin Ther Pat 26 1409-1416 (2016)
  8. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Alshaker H, Thrower H, Pchejetski D. Front Oncol 10 289 (2020)
  9. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Bu Y, Wu H, Deng R, Wang Y. Front Pharmacol 12 733387 (2021)
  10. Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Qi Y, Wang W, Song Z, Aji G, Liu XT, Xia P. Front Endocrinol (Lausanne) 11 627076 (2020)
  11. Approaches for probing and evaluating mammalian sphingolipid metabolism. Snider JM, Luberto C, Hannun YA. Anal Biochem 575 70-86 (2019)
  12. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. Cancer Control 27 1073274820976664 (2020)
  13. A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate. Ren R, Pang B, Han Y, Li Y. Contact (Thousand Oaks) 4 2515256421995601 (2021)

Articles citing this publication (27)

  1. Vitamin D3 Prevents the Deleterious Effects of Testicular Torsion on Testis by Targeting miRNA-145 and ADAM17: In Silico and In Vivo Study. Mohamed DI, Abou-Bakr DA, Ezzat SF, El-Kareem HFA, Nahas HHA, Saad HA, Mehana AE, Saied EM. Pharmaceuticals (Basel) 14 1222 (2021)
  2. Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. Childress ES, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. J Med Chem 60 3933-3957 (2017)
  3. Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. Gupta P, Kadamberi IP, Mittal S, Tsaih SW, George J, Kumar S, Vijayan DK, Geethadevi A, Parashar D, Topchyan P, McAlarnen L, Volkman BF, Cui W, Zhang KYJ, Di Vizio D, Chaluvally-Raghavan P, Pradeep S. Adv Sci (Weinh) 9 e2104452 (2022)
  4. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Vogt D, Stark H. Med Res Rev 37 3-51 (2017)
  5. Structure-Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors. Congdon MD, Kharel Y, Brown AM, Lewis SN, Bevan DR, Lynch KR, Santos WL. ACS Med Chem Lett 7 229-234 (2016)
  6. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Vettorazzi M, Insuasty D, Lima S, Gutiérrez L, Nogueras M, Marchal A, Abonia R, Andújar S, Spiegel S, Cobo J, Enriz RD. Bioorg Chem 94 103414 (2020)
  7. Structure-activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors. Congdon MD, Childress ES, Patwardhan NN, Gumkowski J, Morris EA, Kharel Y, Lynch KR, Santos WL. Bioorg Med Chem Lett 25 4956-4960 (2015)
  8. Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. Sibley CD, Morris EA, Kharel Y, Brown AM, Huang T, Bevan DR, Lynch KR, Santos WL. J Med Chem 63 1178-1198 (2020)
  9. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. ACS Omega 5 21550-21560 (2020)
  10. Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Li H, Sibley CD, Kharel Y, Huang T, Brown AM, Wonilowicz LG, Bevan DR, Lynch KR, Santos WL. Bioorg Med Chem 30 115941 (2021)
  11. Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors. Kharel Y, Agah S, Huang T, Mendelson AJ, Eletu OT, Barkey-Bircann P, Gesualdi J, Smith JS, Santos WL, Lynch KR. PLoS One 13 e0192179 (2018)
  12. Sphingosine kinase 1 mediates diabetic renal fibrosis via NF-κB signaling pathway: involvement of CK2α. Huang J, Li J, Chen Z, Li J, Chen Q, Gong W, Liu P, Huang H. Oncotarget 8 88988-89004 (2017)
  13. Activation of SphK1 by adipocytes mediates epithelial ovarian cancer cell proliferation. Dai L, Wang C, Song K, Wang W, Di W. J Ovarian Res 14 62 (2021)
  14. Sphingosine kinase 1 (SK1) allosteric inhibitors that target the dimerization site. Bayraktar O, Ozkirimli E, Ulgen K. Comput Biol Chem 69 64-76 (2017)
  15. Dissecting Gq/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer Zu Heringdorf D. Cells 9 E2201 (2020)
  16. A chemical screen for modulators of mRNA translation identifies a distinct mechanism of toxicity for sphingosine kinase inhibitors. Corman A, Kanellis DC, Michalska P, Häggblad M, Lafarga V, Bartek J, Carreras-Puigvert J, Fernandez-Capetillo O. PLoS Biol 19 e3001263 (2021)
  17. Development of 1,2,3-Triazole-Based Sphingosine Kinase Inhibitors and Their Evaluation as Antiproliferative Agents. Corvino A, Rosa R, Incisivo GM, Fiorino F, Frecentese F, Magli E, Perissutti E, Saccone I, Santagada V, Cirino G, Riemma MA, Temussi PA, Ciciola P, Bianco R, Caliendo G, Roviezzo F, Severino B. Int J Mol Sci 18 E2332 (2017)
  18. Fluorinated triazole-containing sphingosine analogues. Syntheses and in vitro evaluation as SPHK inhibitors. Escudero-Casao M, Cardona A, Beltrán-Debón R, Díaz Y, Matheu MI, Castillón S. Org Biomol Chem 16 7230-7235 (2018)
  19. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. Congdon M, Fritzemeier RG, Kharel Y, Brown AM, Serbulea V, Bevan DR, Lynch KR, Santos WL. Eur J Med Chem 212 113121 (2021)
  20. Synthesis and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity. Vettorazzi M, Vila L, Lima S, Acosta L, Yépes F, Palma A, Cobo J, Tengler J, Malik I, Alvarez S, Marqués P, Cabedo N, Sanz MJ, Jampilek J, Spiegel S, Enriz RD. Arch Pharm (Weinheim) 352 e1800298 (2019)
  21. Theoretical models to predict the inhibitory effect of ligands of sphingosine kinase 1 using QTAIM calculations and hydrogen bond dynamic propensity analysis. Vettorazzi M, Menéndez C, Gutiérrez L, Andujar S, Appignanesi G, Enriz RD. J Comput Aided Mol Des 32 781-791 (2018)
  22. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. Int J Mol Sci 22 9190 (2021)
  23. Identification of selective inhibitors of sphingosine kinases 1 and 2 through a structure-activity relationship study of 4-epi-jaspine B. Ohno H, Honda M, Hamada N, Miyagaki J, Iwata A, Otsuki K, Maruyama T, Nakamura S, Nakanishi I, Inuki S, Fujii N, Oishi S. Bioorg Med Chem 25 3046-3052 (2017)
  24. Design, synthesis and analysis of novel sphingosine kinase-1 inhibitors to improve oral bioavailability. Butler KJ, Castro AA, Dwyer TS, Hardwick LM, Iacino MC, Manore SG, Mays KM, McGlade CA, Hair LN, Parker EW, Smith MR, Turnow MT, Wilson MR, Woodson SR, Cotham WE, Walla MD, Hurlbert JC, Christian Grattan T. Bioorg Med Chem Lett 50 128329 (2021)
  25. Host-Erythrocytic Sphingosine-1-Phosphate Regulates Plasmodium Histone Deacetylase Activity and Exhibits Epigenetic Control over Cell Death and Differentiation. Sah RK, Anand S, Dar W, Jain R, Kumari G, Madan E, Saini M, Gupta A, Joshi N, Hada RS, Gupta N, Pati S, Singh S. Microbiol Spectr e0276622 (2023)
  26. Introduction of a Polar Functional Group to the Lipid Tail of 4-epi-Jaspine B Affects Sphingosine Kinase Isoform Selectivity. Inuki S, Miyagawa T, Oishi S, Ohno H. Chem Pharm Bull (Tokyo) 66 866-872 (2018)
  27. Molecular docking analysis of sphingosine kinase 1 inhibitors for cancer management. Barnawi J. Bioinformation 19 571-576 (2023)