4o61 Citations

Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation.

J Biol Chem 289 17299-311 (2014)
Cited: 98 times
EuropePMC logo PMID: 24778178

Abstract

N(6)-Methyladenosine (m(6)A) is the most prevalent internal RNA modification in eukaryotes. ALKBH5 belongs to the AlkB family of dioxygenases and has been shown to specifically demethylate m(6)A in single-stranded RNA. Here we report crystal structures of ALKBH5 in the presence of either its cofactors or the ALKBH5 inhibitor citrate. Catalytic assays demonstrate that the ALKBH5 catalytic domain can demethylate both single-stranded RNA and single-stranded DNA. We identify the TCA cycle intermediate citrate as a modest inhibitor of ALKHB5 (IC50, ∼488 μm). The structural analysis reveals that a loop region of ALKBH5 is immobilized by a disulfide bond that apparently excludes the binding of dsDNA to ALKBH5. We identify the m(6)A binding pocket of ALKBH5 and the key residues involved in m(6)A recognition using mutagenesis and ITC binding experiments.

Reviews - 4o61 mentioned but not cited (3)

  1. Structural Insights into N6-methyladenosine (m6A) Modification in the Transcriptome. Huang J, Yin P. Genomics Proteomics Bioinformatics 16 85-98 (2018)
  2. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation. Dong C, Zhang H, Xu C, Arrowsmith CH, Min J. IUCrJ 1 540-549 (2014)
  3. Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y, Huang L. Int J Mol Sci 23 5815 (2022)

Articles - 4o61 mentioned but not cited (2)

  1. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J. J Biol Chem 289 17299-17311 (2014)
  2. Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors. Selberg S, Seli N, Kankuri E, Karelson M. ACS Omega 6 13310-13320 (2021)


Reviews citing this publication (55)

  1. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Shi H, Wei J, He C. Mol Cell 74 640-650 (2019)
  2. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Yue Y, Liu J, He C. Genes Dev 29 1343-1355 (2015)
  3. N6-methyladenosine links RNA metabolism to cancer progression. Dai D, Wang H, Zhu L, Jin H, Wang X. Cell Death Dis 9 124 (2018)
  4. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. J Biol Chem 290 20734-20742 (2015)
  5. YTH Domain: A Family of N6-methyladenosine (m6A) Readers. Liao S, Sun H, Xu C. Genomics Proteomics Bioinformatics 16 99-107 (2018)
  6. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R. Cancer Lett 408 112-120 (2017)
  7. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Zeng C, Huang W, Li Y, Weng H. J Hematol Oncol 13 117 (2020)
  8. The RNA Modification N6-methyladenosine and Its Implications in Human Disease. Batista PJ. Genomics Proteomics Bioinformatics 15 154-163 (2017)
  9. Regulatory Role of N6 -methyladenosine (m6 A) Methylation in RNA Processing and Human Diseases. Wei W, Ji X, Guo X, Ji S. J Cell Biochem 118 2534-2543 (2017)
  10. Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. Chen J, Du B. J Cancer Res Clin Oncol 145 19-29 (2019)
  11. The biological function of m6A demethylase ALKBH5 and its role in human disease. Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, Zhang Q. Cancer Cell Int 20 347 (2020)
  12. N (6)-Methyladenosine (m(6)A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Wu R, Jiang D, Wang Y, Wang X. Mol Biotechnol 58 450-459 (2016)
  13. Readers, writers and erasers of N6-methylated adenosine modification. Wu B, Li L, Huang Y, Ma J, Min J. Curr Opin Struct Biol 47 67-76 (2017)
  14. RNA-modifying proteins as anticancer drug targets. Boriack-Sjodin PA, Ribich S, Copeland RA. Nat Rev Drug Discov 17 435-453 (2018)
  15. Emerging roles of RNA methylation in gastrointestinal cancers. Xie S, Chen W, Chen K, Chang Y, Yang F, Lin A, Shu Q, Zhou T, Yan X. Cancer Cell Int 20 585 (2020)
  16. The Emerging Role of Epitranscriptomics in Cancer: Focus on Urological Tumors. Lobo J, Barros-Silva D, Henrique R, Jerónimo C. Genes (Basel) 9 E552 (2018)
  17. RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T, Chen C. Innovation (Camb) 1 100066 (2020)
  18. N 6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Niu Y, Wan A, Lin Z, Lu X, Wan G. Acta Pharm Sin B 8 833-843 (2018)
  19. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B. Mol Cancer 19 64 (2020)
  20. Role of Methylation in Pro- and Anti-Cancer Immunity. Mehdi A, Rabbani SA. Cancers (Basel) 13 545 (2021)
  21. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J, Li L. Signal Transduct Target Ther 7 142 (2022)
  22. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. Falconer RJ. J Mol Recognit 29 504-515 (2016)
  23. The m6A‑methylase complex and mRNA export. Lesbirel S, Wilson SA. Biochim Biophys Acta Gene Regul Mech 1862 319-328 (2019)
  24. Advances in epigenetic therapeutics with focus on solid tumors. Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Clin Epigenetics 13 83 (2021)
  25. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. J Hematol Oncol 15 8 (2022)
  26. Functions of RNA N6-methyladenosine modification in cancer progression. Chen B, Li Y, Song R, Xue C, Xu F. Mol Biol Rep 46 2567-2575 (2019)
  27. Small changes, big implications: The impact of m6A RNA methylation on gene expression in pluripotency and development. Heck AM, Wilusz CJ. Biochim Biophys Acta Gene Regul Mech 1862 194402 (2019)
  28. Novel Insights into Adipogenesis from the Perspective of Transcriptional and RNA N6-Methyladenosine-Mediated Post-Transcriptional Regulation. Song T, Yang Y, Jiang S, Peng J. Adv Sci (Weinh) 7 2001563 (2020)
  29. It's complicated… m6A-dependent regulation of gene expression in cancer. Fitzsimmons CM, Batista PJ. Biochim Biophys Acta Gene Regul Mech 1862 382-393 (2019)
  30. The Role of Dynamic m6 A RNA Methylation in Photobiology. Robinson M, Shah P, Cui YH, He YY. Photochem Photobiol 95 95-104 (2019)
  31. Functions of RNA N6-methyladenosine modification in cancer progression. Chen B, Li Y, Song R, Xue C, Xu F. Mol Biol Rep 46 1383-1391 (2019)
  32. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. Chi HC, Tsai CY, Tsai MM, Lin KH. Int J Mol Sci 19 E555 (2018)
  33. Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Li H, Wu H, Wang Q, Ning S, Xu S, Pang D. Mol Ther Nucleic Acids 24 25-39 (2021)
  34. New Insights on the Role of N 6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Dermentzaki G, Lotti F. Front Mol Biosci 7 555372 (2020)
  35. Advances in the role of m6A RNA modification in cancer metabolic reprogramming. Han X, Wang L, Han Q. Cell Biosci 10 117 (2020)
  36. Function and clinical significance of N6-methyladenosine in digestive system tumours. Huang J, Shao Y, Gu W. Exp Hematol Oncol 10 40 (2021)
  37. Detailed resume of RNA m6A demethylases. Shen D, Wang B, Gao Y, Zhao L, Bi Y, Zhang J, Wang N, Kang H, Pang J, Liu Y, Pang L, Chen ZS, Zheng YC, Liu HM. Acta Pharm Sin B 12 2193-2205 (2022)
  38. m6A RNA modification in transcription regulation. Akhtar J, Lugoboni M, Junion G. Transcription 12 266-276 (2021)
  39. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Wu Y, Zhang S, Yuan Q. Stem Cells Dev 25 1050-1059 (2016)
  40. Research progress concerning m6A methylation and cancer. Zhou Y, Yang J, Tian Z, Zeng J, Shen W. Oncol Lett 22 775 (2021)
  41. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Bayoumi M, Munir M, Munir M. Front Cell Dev Biol 8 587108 (2020)
  42. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Alzheimers Dement 18 2637-2668 (2022)
  43. Implications of m6A methylation and microbiota interaction in non-small cell lung cancer: From basics to therapeutics. Qiu FS, He JQ, Zhong YS, Guo MY, Yu CH. Front Cell Infect Microbiol 12 972655 (2022)
  44. RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Zhang X, Su H, Chen H, Li Q, Liu X, Zhang L, Wu WKK, Chan MTV, Chen H. Biomedicines 10 1918 (2022)
  45. The Proteins of mRNA Modification: Writers, Readers, and Erasers. Flamand MN, Tegowski M, Meyer KD. Annu Rev Biochem 92 145-173 (2023)
  46. The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Liu H, Zheng J, Liao A. Front Immunol 13 988130 (2022)
  47. Crosstalk between N6-methyladenosine (m6A) modification and noncoding RNA in tumor microenvironment. Wang D, Han Y, Peng L, Huang T, He X, Wang J, Ou C. Int J Biol Sci 19 2198-2219 (2023)
  48. Epitranscriptomics in metabolic disease. Matsumura Y, Wei FY, Sakai J. Nat Metab 5 370-384 (2023)
  49. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Zhang Y, Zhan L, Li J, Jiang X, Yin L. Aging (Albany NY) 15 3857-3889 (2023)
  50. Insights into the regulatory role of RNA methylation modifications in glioma. Long S, Yan Y, Xu H, Wang L, Jiang J, Xu Z, Liu R, Zhou Q, Huang X, Chen J, Li Z, Wei W, Li X. J Transl Med 21 810 (2023)
  51. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. Heliyon 10 e23668 (2024)
  52. RNA modification: mechanisms and therapeutic targets. Qiu L, Jing Q, Li Y, Han J. Mol Biomed 4 25 (2023)
  53. RNA modifications in hematological malignancies. Jin Z, MacPherson K, Liu Z, Vu LP. Int J Hematol 117 807-820 (2023)
  54. The role of demethylase AlkB homologs in cancer. Li Q, Zhu Q. Front Oncol 13 1153463 (2023)
  55. The role of m6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Shan Y, Chen W, Li Y. Genes Dis 11 252-267 (2024)

Articles citing this publication (38)

  1. Reversible methylation of m6Am in the 5' cap controls mRNA stability. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M, Jaffrey SR. Nature 541 371-375 (2017)
  2. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C, Yang CG. Nucleic Acids Res 43 373-384 (2015)
  3. Structural Basis for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B Homology Domain Family of Proteins. Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J. J Biol Chem 290 24902-24913 (2015)
  4. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Luo S, Tong L. Proc Natl Acad Sci U S A 111 13834-13839 (2014)
  5. N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Brüning JC, Qian SB. Mol Cell 69 636-647.e7 (2018)
  6. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, Wang Y, Yang J, Tian F. Mol Cancer 18 168 (2019)
  7. m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Liu L, Wang J, Sun G, Wu Q, Ma J, Zhang X, Huang N, Bian Z, Gu S, Xu M, Yin M, Sun F, Pan Q. Mol Cancer 18 188 (2019)
  8. A deep learning framework for modeling structural features of RNA-binding protein targets. Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J. Nucleic Acids Res 44 e32 (2016)
  9. N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC. Sci Rep 6 25677 (2016)
  10. m6A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM. ACS Chem Biol 16 324-333 (2021)
  11. N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. RNA 23 1444-1455 (2017)
  12. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. Jiang Y, Wan Y, Gong M, Zhou S, Qiu J, Cheng W, Cheng W. J Cell Mol Med 24 6137-6148 (2020)
  13. The DEAD-Box RNA Helicase DDX3 Interacts with m6A RNA Demethylase ALKBH5. Shah A, Rashid F, Awan HM, Hu S, Wang X, Chen L, Shan G. Stem Cells Int 2017 8596135 (2017)
  14. A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. Li F, Kennedy S, Hajian T, Gibson E, Seitova A, Xu C, Arrowsmith CH, Vedadi M. J Biomol Screen 21 290-297 (2016)
  15. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA. Zhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H. Cell Res 30 197-210 (2020)
  16. ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: A retrospective multicohort study. Cho SH, Ha M, Cho YH, Ryu JH, Yang K, Lee KH, Han ME, Oh SO, Kim YH. Ann Hepatobiliary Pancreat Surg 22 305-309 (2018)
  17. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chen F, Tang Q, Bian K, Humulock ZT, Yang X, Jost M, Drennan CL, Essigmann JM, Li D. Chem Res Toxicol 29 687-693 (2016)
  18. Active Site Breathing of Human Alkbh5 Revealed by Solution NMR and Accelerated Molecular Dynamics. Purslow JA, Nguyen TT, Egner TK, Dotas RR, Khatiwada B, Venditti V. Biophys J 115 1895-1905 (2018)
  19. Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes. Kaur S, Tam NY, McDonough MA, Schofield CJ, Aik WS. Nucleic Acids Res 50 4148-4160 (2022)
  20. Selective Chemical Functionalization at N6-Methyladenosine Residues in DNA Enabled by Visible-Light-Mediated Photoredox Catalysis. Nappi M, Hofer A, Balasubramanian S, Gaunt MJ. J Am Chem Soc 142 21484-21492 (2020)
  21. Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Bayoumi M, Rohaim MA, Munir M, Munir M. Front Cell Dev Biol 8 543 (2020)
  22. Inducible and reversible RNA N6-methyladenosine editing. Shi H, Xu Y, Tian N, Yang M, Liang FS. Nat Commun 13 1958 (2022)
  23. Mapping of Functional Subdomains in the atALKBH9B m6A-Demethylase Required for Its Binding to the Viral RNA and to the Coat Protein of Alfalfa Mosaic Virus. Alvarado-Marchena L, Marquez-Molins J, Martinez-Perez M, Aparicio F, Pallás V. Front Plant Sci 12 701683 (2021)
  24. Regulation of telomere homeostasis and genomic stability in cancer by N6-adenosine methylation (m6A). Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán G P, Lam HM, Garcia J, Roudier MP, Sisk AE, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao MK, Zheng S, Johnson-Pais TL, Leach RJ, Elizalde PV, Dray E, Xu K. Sci Adv 7 eabg7073 (2021)
  25. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Noncoding RNA 7 6 (2021)
  26. N-terminal fusion of the N-terminal domain of bacterial enzyme I facilitates recombinant expression and purification of the human RNA demethylases FTO and Alkbh5. Khatiwada B, Purslow JA, Underbakke ES, Venditti V. Protein Expr Purif 167 105540 (2020)
  27. N6-Adenosine Methylation of miRNA-200b-3p Influences Its Functionality and Is a Theranostic Tool. Briand J, Sérandour AA, Nadaradjane A, Bougras-Cartron G, Heymann D, Ory B, Vallette FM, Cartron PF. Mol Ther Nucleic Acids 22 72-83 (2020)
  28. 1H, 15N, 13C backbone resonance assignment of human Alkbh5. Purslow JA, Venditti V. Biomol NMR Assign 12 297-301 (2018)
  29. rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N6-methyladenosine-dependent E2F3/E2F6 mRNA stability. Chen Z, Huang L, Wang K, Zhang L, Zhong X, Yan Z, Liu B, Zhu P. Sci China Life Sci 65 1840-1854 (2022)
  30. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network. Chung T, Kim D. PLoS One 14 e0216257 (2019)
  31. A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. Chang C, Ma G, Cheung E, Hutchins AP. J Biol Chem 298 102525 (2022)
  32. m6A-Regulator Expression Signatures Identify a Subset of Follicular Lymphoma Harboring an Exhausted Tumor Microenvironment. Zhang T, Liu H, Gao F, Gong W, Cui Y, He J, Li L, Qiu L, Qian Z, Zhou S, Meng B, Ren X, Zhang H, Wang X. Front Immunol 13 922471 (2022)
  33. Developing an m5C regulator-mediated RNA methylation modification signature to predict prognosis and immunotherapy efficacy in rectal cancer. Zhang R, Gan W, Zong J, Hou Y, Zhou M, Yan Z, Li T, Lv S, Zeng Z, Wang W, Zhang F, Yang M. Front Immunol 14 1054700 (2023)
  34. Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Verma A, Sinha A, Datta D. Subcell Biochem 100 557-579 (2022)
  35. Promoting axon regeneration by inhibiting RNA N6-methyladenosine demethylase ALKBH5. Wang D, Zheng T, Zhou S, Liu M, Liu Y, Gu X, Mao S, Yu B. Elife 12 e85309 (2023)
  36. Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements. Alvarado-Marchena L, Martínez-Pérez M, Aparicio F, Pallas V, Maumus F. Front Plant Sci 13 939843 (2022)
  37. Targeted mRNA demethylation in Arabidopsis using plant m6A editor. Fang R, Chen X, Shen J, Wang B. Plant Methods 19 81 (2023)
  38. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. Qin X, Long Y, Bai X, Cao L, Yan H, Zhang K, Wang B, Wu X. J Biol Chem 299 105071 (2023)