3vp0 Citations

Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism.

Proc Natl Acad Sci U S A 109 7705-10 (2012)
Related entries: 3czd, 3voy, 3voz, 3vp1, 3vp2, 3vp3, 3vp4

Cited: 109 times
EuropePMC logo PMID: 22538822

Abstract

Besides thriving on altered glucose metabolism, cancer cells undergo glutaminolysis to meet their energy demands. As the first enzyme in catalyzing glutaminolysis, human kidney-type glutaminase isoform (KGA) is becoming an attractive target for small molecules such as BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide], although the regulatory mechanism of KGA remains unknown. On the basis of crystal structures, we reveal that BPTES binds to an allosteric pocket at the dimer interface of KGA, triggering a dramatic conformational change of the key loop (Glu312-Pro329) near the catalytic site and rendering it inactive. The binding mode of BPTES on the hydrophobic pocket explains its specificity to KGA. Interestingly, KGA activity in cells is stimulated by EGF, and KGA associates with all three kinase components of the Raf-1/Mek2/Erk signaling module. However, the enhanced activity is abrogated by kinase-dead, dominant negative mutants of Raf-1 (Raf-1-K375M) and Mek2 (Mek2-K101A), protein phosphatase PP2A, and Mek-inhibitor U0126, indicative of phosphorylation-dependent regulation. Furthermore, treating cells that coexpressed Mek2-K101A and KGA with suboptimal level of BPTES leads to synergistic inhibition on cell proliferation. Consequently, mutating the crucial hydrophobic residues at this key loop abrogates KGA activity and cell proliferation, despite the binding of constitutive active Mek2-S222/226D. These studies therefore offer insights into (i) allosteric inhibition of KGA by BPTES, revealing the dynamic nature of KGA's active and inhibitory sites, and (ii) cross-talk and regulation of KGA activities by EGF-mediated Raf-Mek-Erk signaling. These findings will help in the design of better inhibitors and strategies for the treatment of cancers addicted with glutamine metabolism.

Reviews - 3vp0 mentioned but not cited (1)

  1. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Katt WP, Lukey MJ, Cerione RA. Future Med Chem 9 223-243 (2017)

Articles - 3vp0 mentioned but not cited (2)

  1. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V, Schüler H, Low BC, Sivaraman J. Proc Natl Acad Sci U S A 109 7705-7710 (2012)
  2. Case Reports A second case of glutaminase hyperactivity: Expanding the phenotype with epilepsy. Rumping L, Pouwels PJW, Wolf NI, Rehmann H, Wamelink MMC, Waisfisz Q, Jans JJM, Prinsen HCMT, van de Kamp JM, van Hasselt PM. JIMD Rep 64 217-222 (2023)


Reviews citing this publication (28)

  1. Glutaminolysis as a target for cancer therapy. Jin L, Alesi GN, Kang S. Oncogene 35 3619-3625 (2016)
  2. Targeting cancer metabolism in the era of precision oncology. Stine ZE, Schug ZT, Salvino JM, Dang CV. Nat Rev Drug Discov 21 141-162 (2022)
  3. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Akins NS, Nielson TC, Le HV. Curr Top Med Chem 18 494-504 (2018)
  4. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Chen L, Cui H. Int J Mol Sci 16 22830-22855 (2015)
  5. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Schiliro C, Firestein BL. Cells 10 1056 (2021)
  6. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y. Front Oncol 10 589508 (2020)
  7. Therapeutic strategies impacting cancer cell glutamine metabolism. Lukey MJ, Wilson KF, Cerione RA. Future Med Chem 5 1685-1700 (2013)
  8. Glutaminase regulation in cancer cells: a druggable chain of events. Katt WP, Cerione RA. Drug Discov Today 19 450-457 (2014)
  9. Harnessing allostery: a novel approach to drug discovery. Lu S, Li S, Zhang J. Med Res Rev 34 1242-1285 (2014)
  10. NRF2 and p53: Januses in cancer? Rotblat B, Melino G, Knight RA. Oncotarget 3 1272-1283 (2012)
  11. Rho GTPases and their roles in cancer metabolism. Wilson KF, Erickson JW, Antonyak MA, Cerione RA. Trends Mol Med 19 74-82 (2013)
  12. The role of FAK in tumor metabolism and therapy. Zhang J, Hochwald SN. Pharmacol Ther 142 154-163 (2014)
  13. Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. Yang WH, Qiu Y, Stamatatos O, Janowitz T, Lukey MJ. Trends Cancer 7 790-804 (2021)
  14. Targeting mitochondrial metabolism for precision medicine in cancer. Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Cell Death Differ 29 1304-1317 (2022)
  15. The 'Achilles Heel' of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. Hoerner CR, Chen VJ, Fan AC. Kidney Cancer 3 15-29 (2019)
  16. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Stine ZE, Dang CV. Crit Rev Biochem Mol Biol 48 609-619 (2013)
  17. Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. Zimmermann SC, Duvall B, Tsukamoto T. J Med Chem 62 46-59 (2019)
  18. Glutaminase inhibitors: a patent review. Wu C, Chen L, Jin S, Li H. Expert Opin Ther Pat 28 823-835 (2018)
  19. Mammalian glutaminase isozymes in brain. Márquez J, Cardona C, Campos-Sandoval JA, Peñalver A, Tosina M, Matés JM, Martín-Rufián M. Metab Brain Dis 28 133-137 (2013)
  20. Targeting Cancer Metabolism and Current Anti-Cancer Drugs. Sukjoi W, Ngamkham J, Attwood PV, Jitrapakdee S. Adv Exp Med Biol 1286 15-48 (2021)
  21. Emerging Role of Podocalyxin in the Progression of Mature B-Cell Non-Hodgkin Lymphoma. Tamayo-Orbegozo E, Amo L, Díez-García J, Amutio E, Riñón M, Alonso M, Arana P, Maruri N, Larrucea S. Cancers (Basel) 12 E396 (2020)
  22. Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells. Kao TW, Chuang YC, Lee HL, Kuo CC, Shen YA. Int J Mol Sci 23 15296 (2022)
  23. [Targeting of the AKT/m-TOR Pathway: Biomarkers of Resistance to Cancer Therapy--
AKT/m-TOR Pathway and Resistance to Cancer Therapy]. Spirina LV, Kondakova IV, Tarasenko NV, Slonimskaya EM, Usynin EA, Gorbunov AK, Yurmazov ZA, Chigevskaya SY. Zhongguo Fei Ai Za Zhi 21 63-66 (2018)
  24. Harnessing the cyclization strategy for new drug discovery. Tang K, Wang S, Gao W, Song Y, Yu B. Acta Pharm Sin B 12 4309-4326 (2022)
  25. Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application. Raza SHA, Zhong R, Yu X, Zhao G, Wei X, Lei H. Mol Biotechnol (2023)
  26. Biomolecular condensates in kidney physiology and disease. Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Nat Rev Nephrol (2023)
  27. Glutamine addiction and therapeutic strategies in pancreatic cancer. Ren LL, Mao T, Meng P, Zhang L, Wei HY, Tian ZB. World J Gastrointest Oncol 15 1852-1863 (2023)
  28. The pyridazine heterocycle in molecular recognition and drug discovery. Meanwell NA. Med Chem Res 1-69 (2023)

Articles citing this publication (78)

  1. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P, Sun L, Song L, Yan B, Slusher BS, Zhuo J, Ooi LL, Lee CG, Mancuso A, McCallion AS, Le A, Milone MC, Rayport S, Felsher DW, Dang CV. J Clin Invest 125 2293-2306 (2015)
  2. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, Sansone L, Villanova L, Runci A, Pucci B, Morgante E, Fini M, Mai A, Russo MA, Tafani M. Autophagy 11 253-270 (2015)
  3. Hedgehog-YAP Signaling Pathway Regulates Glutaminolysis to Control Activation of Hepatic Stellate Cells. Du K, Hyun J, Premont RT, Choi SS, Michelotti GA, Swiderska-Syn M, Dalton GD, Thelen E, Rizi BS, Jung Y, Diehl AM. Gastroenterology 154 1465-1479.e13 (2018)
  4. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, Fu J, Chen B, Xia S, Liu Y, Neisser M, Nguyen C, Lee R, Park JK, Reyes J, Hartung T, Rojas C, Rais R, Tsukamoto T, Semenza GL, Hanes J, Slusher BS, Le A. Proc Natl Acad Sci U S A 113 E5328-36 (2016)
  5. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P, Xiang Y, Dang CV, Slusher BS, Tsukamoto T. J Med Chem 55 10551-10563 (2012)
  6. Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ, Karner CM. Cell Metab 29 966-978.e4 (2019)
  7. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. Budczies J, Brockmöller SF, Müller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Orešič M, Dietel M, Denkert C, Fiehn O. J Proteomics 94 279-288 (2013)
  8. Inhibition of cancer cell proliferation by PPARγ is mediated by a metabolic switch that increases reactive oxygen species levels. Srivastava N, Kollipara RK, Singh DK, Sudderth J, Hu Z, Nguyen H, Wang S, Humphries CG, Carstens R, Huffman KE, DeBerardinis RJ, Kittler R. Cell Metab 20 650-661 (2014)
  9. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. Li B, Cao Y, Meng G, Qian L, Xu T, Yan C, Luo O, Wang S, Wei J, Ding Y, Yu D. EBioMedicine 39 239-254 (2019)
  10. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. Hernandez-Davies JE, Tran TQ, Reid MA, Rosales KR, Lowman XH, Pan M, Moriceau G, Yang Y, Wu J, Lo RS, Kong M. J Transl Med 13 210 (2015)
  11. A pathway map of glutamate metabolism. Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, Keshava Prasad TS, Pandey A, Somani BL, Gowda H. J Cell Commun Signal 10 69-75 (2016)
  12. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S, Li J, Pang X, Shi H, Liang H. Biochim Biophys Acta 1833 2996-3005 (2013)
  13. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Thangavelu K, Chong QY, Low BC, Sivaraman J. Sci Rep 4 3827 (2014)
  14. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, Wu H, Blanco F, Li S, Bhanot G, Haffty BG, Hu W, Feng Z. Elife 5 e10727 (2016)
  15. [18F](2S,4R)4-Fluoroglutamine PET Detects Glutamine Pool Size Changes in Triple-Negative Breast Cancer in Response to Glutaminase Inhibition. Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, Blankemeyer E, Lee H, Kung HF, Mach RH, Mankoff DA. Cancer Res 77 1476-1484 (2017)
  16. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. Martín-Rufián M, Nascimento-Gomes R, Higuero A, Crisma AR, Campos-Sandoval JA, Gómez-García MC, Cardona C, Cheng T, Lobo C, Segura JA, Alonso FJ, Szeliga M, Albrecht J, Curi R, Márquez J, Colquhoun A, Deberardinis RJ, Matés JM. J Mol Med (Berl) 92 277-290 (2014)
  17. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Stalnecker CA, Ulrich SM, Li Y, Ramachandran S, McBrayer MK, DeBerardinis RJ, Cerione RA, Erickson JW. Proc Natl Acad Sci U S A 112 394-399 (2015)
  18. Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor. Ferreira AP, Cassago A, Gonçalves Kde A, Dias MM, Adamoski D, Ascenção CF, Honorato RV, de Oliveira JF, Ferreira IM, Fornezari C, Bettini J, Oliveira PS, Paes Leme AF, Portugal RV, Ambrosio AL, Dias SM. J Biol Chem 288 28009-28020 (2013)
  19. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. Huang Q, Stalnecker C, Zhang C, McDermott LA, Iyer P, O'Neill J, Reimer S, Cerione RA, Katt WP. J Biol Chem 293 3535-3545 (2018)
  20. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Greene KS, Lukey MJ, Wang X, Blank B, Druso JE, Lin MJ, Stalnecker CA, Zhang C, Negrón Abril Y, Erickson JW, Wilson KF, Lin H, Weiss RS, Cerione RA. Proc Natl Acad Sci U S A 116 26625-26632 (2019)
  21. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, Liu H, Qing G. Oncotarget 6 40655-40666 (2015)
  22. Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Simon J, Nuñez-García M, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, Rodriguez-Agudo R, Bizkarguenaga M, Zubiete-Franco I, Gutiérrez-de Juan V, Cabrera D, Alonso C, Iruzubieta P, Romero-Gomez M, van Liempd S, Castro A, Nogueiras R, Varela-Rey M, Falcón-Pérez JM, Villa E, Crespo J, Lu SC, Mato JM, Aspichueta P, Delgado TC, Martínez-Chantar ML. Cell Metab 31 605-622.e10 (2020)
  23. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Qie S, Yoshida A, Parnham S, Oleinik N, Beeson GC, Beeson CC, Ogretmen B, Bass AJ, Wong KK, Rustgi AK, Diehl JA. Nat Commun 10 1296 (2019)
  24. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Thomas AG, Rojas C, Tanega C, Shen M, Simeonov A, Boxer MB, Auld DS, Ferraris DV, Tsukamoto T, Slusher BS. Biochem Biophys Res Commun 438 243-248 (2013)
  25. Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Lee YZ, Yang CW, Chang HY, Hsu HY, Chen IS, Chang HS, Lee CH, Lee JC, Kumar CR, Qiu YQ, Chao YS, Lee SJ. Oncotarget 5 6087-6101 (2014)
  26. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity. Wu B, Huang Y, Braun AL, Tong Z, Zhao R, Li Y, Liu F, Zheng JC. Mol Neurodegener 10 61 (2015)
  27. Allosteric Glutaminase Inhibitors Based on a 1,4-Di(5-amino-1,3,4-thiadiazol-2-yl)butane Scaffold. Zimmermann SC, Wolf EF, Luu A, Thomas AG, Stathis M, Poore B, Nguyen C, Le A, Rojas C, Slusher BS, Tsukamoto T. ACS Med Chem Lett 7 520-524 (2016)
  28. BAG3 promotes autophagy and glutaminolysis via stabilizing glutaminase. Zhao S, Wang JM, Yan J, Zhang DL, Liu BQ, Jiang JY, Li C, Li S, Meng XN, Wang HQ. Cell Death Dis 10 284 (2019)
  29. Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo-l-Norleucine in Mice with Alphavirus Encephalomyelitis. Manivannan S, Baxter VK, Schultz KL, Slusher BS, Griffin DE. J Virol 90 9251-9262 (2016)
  30. Glutamate excitotoxicity activates the MAPK/ERK signaling pathway and induces the survival of rat hippocampal neurons in vivo. Ortuño-Sahagún D, González RM, Verdaguer E, Huerta VC, Torres-Mendoza BM, Lemus L, Rivera-Cervantes MC, Camins A, Zárate CB. J Mol Neurosci 52 366-377 (2014)
  31. The Glutaminase-1 Inhibitor 968 Enhances Dihydroartemisinin-Mediated Antitumor Efficacy in Hepatocellular Carcinoma Cells. Wang D, Meng G, Zheng M, Zhang Y, Chen A, Wu J, Wei J. PLoS One 11 e0166423 (2016)
  32. Design and evaluation of novel glutaminase inhibitors. McDermott LA, Iyer P, Vernetti L, Rimer S, Sun J, Boby M, Yang T, Fioravanti M, O'Neill J, Wang L, Drakes D, Katt W, Huang Q, Cerione R. Bioorg Med Chem 24 1819-1839 (2016)
  33. Targeting cellular metabolism to reduce head and neck cancer growth. Yang J, Guo Y, Seo W, Zhang R, Lu C, Wang Y, Luo L, Paul B, Yan W, Saxena D, Li X. Sci Rep 9 4995 (2019)
  34. Discovery of IPN60090, a Clinical Stage Selective Glutaminase-1 (GLS-1) Inhibitor with Excellent Pharmacokinetic and Physicochemical Properties. Soth MJ, Le K, Di Francesco ME, Hamilton MM, Liu G, Burke JP, Carroll CL, Kovacs JJ, Bardenhagen JP, Bristow CA, Cardozo M, Czako B, de Stanchina E, Feng N, Garvey JR, Gay JP, Do MKG, Greer J, Han M, Harris A, Herrera Z, Huang S, Giuliani V, Jiang Y, Johnson SB, Johnson TA, Kang Z, Leonard PG, Liu Z, McAfoos T, Miller M, Morlacchi P, Mullinax RA, Palmer WS, Pang J, Rogers N, Rudin CM, Shepard HE, Spencer ND, Theroff J, Wu Q, Xu A, Yau JA, Draetta G, Toniatti C, Heffernan TP, Jones P. J Med Chem 63 12957-12977 (2020)
  35. Structural basis for exploring the allosteric inhibition of human kidney type glutaminase. Ramachandran S, Pan CQ, Zimmermann SC, Duvall B, Tsukamoto T, Low BC, Sivaraman J. Oncotarget 7 57943-57954 (2016)
  36. Combined blockade of EGFR and glutamine metabolism in preclinical models of colorectal cancer. Cohen AS, Geng L, Zhao P, Fu A, Schulte ML, Graves-Deal R, Washington MK, Berlin J, Coffey RJ, Manning HC. Transl Oncol 13 100828 (2020)
  37. Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS. Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, Ramachandran S. J Biol Chem 291 20900-20910 (2016)
  38. Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Han T, Zhan W, Gan M, Liu F, Yu B, Chin YE, Wang JB. Cell Res 28 655-669 (2018)
  39. Glutaminolysis Was Induced by TGF-β1 through PP2Ac Regulated Raf-MEK-ERK Signaling in Endothelial Cells. Guo Y, Deng Y, Li X, Ning Y, Lin X, Guo S, Chen M, Han M. PLoS One 11 e0162658 (2016)
  40. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, Zhang M, Wen JG, Zhang H, Goscinski MA, Nesland JM, Suo Z. Oncotarget 7 53837-53852 (2016)
  41. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Zhao J, Zhou R, Hui K, Yang Y, Zhang Q, Ci Y, Shi L, Xu C, Huang F, Hu Y. Oncotarget 8 18832-18847 (2017)
  42. Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. Stalnecker CA, Erickson JW, Cerione RA. J Biol Chem 292 6095-6107 (2017)
  43. Lysophosphatidic Acid and Glutamatergic Transmission. Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Front Mol Neurosci 12 138 (2019)
  44. Letter Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion. Cai WF, Zhang C, Wu YQ, Zhuang G, Ye Z, Zhang CS, Lin SC. Cell Res 28 865-867 (2018)
  45. Non-Invasive Glutamine PET Reflects Pharmacological Inhibition of BRAFV600E In Vivo. Schulte ML, Hight MR, Ayers GD, Liu Q, Shyr Y, Washington MK, Manning HC. Mol Imaging Biol 19 421-428 (2017)
  46. A Metabolomics Study of BPTES Altered Metabolism in Human Breast Cancer Cell Lines. Nagana Gowda GA, Barding GA, Dai J, Gu H, Margineantu DH, Hockenbery DM, Raftery D. Front Mol Biosci 5 49 (2018)
  47. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Lešnik S, Bren U. Foods 11 67 (2021)
  48. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Smith MR, Vayalil PK, Zhou F, Benavides GA, Beggs RR, Golzarian H, Nijampatnam B, Oliver PG, Smith RA, Murphy MP, Velu SE, Landar A. Redox Biol 8 136-148 (2016)
  49. New insights into the molecular mechanisms of glutaminase C inhibitors in cancer cells using serial room temperature crystallography. Milano SK, Huang Q, Nguyen TT, Ramachandran S, Finke A, Kriksunov I, Schuller DJ, Szebenyi DM, Arenholz E, McDermott LA, Sukumar N, Cerione RA, Katt WP. J Biol Chem 298 101535 (2022)
  50. Physapubescin, a natural withanolide as a kidney-type glutaminase (KGA) inhibitor. Cheng L, Wu CR, Zhu LH, Li H, Chen LX. Bioorg Med Chem Lett 27 1243-1246 (2017)
  51. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth. Zhao JS, Shi S, Qu HY, Keckesova Z, Cao ZJ, Yang LX, Yu X, Feng L, Shi Z, Krakowiak J, Mao RY, Shen YT, Fan YM, Fu TM, Ye C, Xu D, Gao X, You J, Li W, Liang T, Lu Z, Feng YX. Nat Metab 4 239-253 (2022)
  52. Characterization of Organic Solvent-Tolerant Lipolytic Enzyme from Marinobacter lipolyticus Isolated from the Antarctic Ocean. Park SH, Kim SJ, Park S, Kim HK. Appl Biochem Biotechnol 187 1046-1060 (2019)
  53. Glutaminase and MMP-9 Downregulation in Cortex and Hippocampus of LPA1 Receptor Null Mice Correlate with Altered Dendritic Spine Plasticity. Peñalver A, Campos-Sandoval JA, Blanco E, Cardona C, Castilla L, Martín-Rufián M, Estivill-Torrús G, Sánchez-Varo R, Alonso FJ, Pérez-Hernández M, Colado MI, Gutiérrez A, de Fonseca FR, Márquez J. Front Mol Neurosci 10 278 (2017)
  54. Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. Osterman AL, Rodionova I, Li X, Sergienko E, Ma CT, Catanzaro A, Pettigrove ME, Reed RW, Gupta R, Rohde KH, Korotkov KV, Sorci L. ACS Chem Biol 14 949-958 (2019)
  55. Nuclear factor-κB p65 regulates glutaminase 1 expression in human hepatocellular carcinoma. Dong M, Miao L, Zhang F, Li S, Han J, Yu R, Qie S. Onco Targets Ther 11 3721-3729 (2018)
  56. The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. Delgir S, Ilkhani K, Safi A, Rahmati Y, Montazari V, Zaynali-Khasraghi Z, Seif F, Bastami M, Alivand MR. BMC Med Genomics 14 180 (2021)
  57. Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways. Fazzari J, Linher-Melville K, Singh G. Curr Neuropharmacol 15 620-636 (2017)
  58. A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity. Wu C, Zheng M, Gao S, Luan S, Cheng L, Wang L, Li J, Chen L, Li H. Oncotarget 8 113516-113530 (2017)
  59. Glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins from pathogenic bacteria. Turner ML, Owens SE, Sheldon IM. PLoS One 15 e0219275 (2020)
  60. High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding. Nguyen TT, Ramachandran S, Hill MJ, Cerione RA. J Biol Chem 298 101564 (2022)
  61. Identification and characterization of a novel glutaminase inhibitor. Cederkvist H, Kolan SS, Wik JA, Sener Z, Skålhegg BS. FEBS Open Bio 12 163-174 (2022)
  62. Allosteric kidney-type glutaminase (GLS) inhibitors with a mercaptoethyl linker. Duvall B, Zimmermann SC, Gao RD, Thomas AG, Kalčic F, Veeravalli V, Elgogary A, Rais R, Rojas C, Le A, Slusher BS, Tsukamoto T. Bioorg Med Chem 28 115698 (2020)
  63. Bmcc1s interacts with the phosphate-activated glutaminase in the brain. Boulay AC, Burbassi S, Lorenzo HK, Loew D, Ezan P, Giaume C, Cohen-Salmon M. Biochimie 95 799-807 (2013)
  64. Combinatorial molecule screening identified a novel diterpene and the BET inhibitor CPI-203 as differentiation inducers of primary acute myeloid leukemia cells. Hultmark S, Baudet A, Schmiderer L, Prabhala P, Palma-Tortosa S, Sandén C, Fioretos T, Sasidharan R, Larsson C, Lehmann S, Juliusson G, Ek F, Magnusson M. Haematologica 106 2566-2577 (2021)
  65. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Rais R, Lemberg KM, Tenora L, Arwood ML, Pal A, Alt J, Wu Y, Lam J, Aguilar JMH, Zhao L, Peters DE, Tallon C, Pandey R, Thomas AG, Dash RP, Seiwert T, Majer P, Leone RD, Powell JD, Slusher BS. Sci Adv 8 eabq5925 (2022)
  66. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase. McDonald CJ, Acheff E, Kennedy R, Taylor L, Curthoys NP. Neurochem Int 88 10-14 (2015)
  67. GAC inhibitors with a 4-hydroxypiperidine spacer: Requirements for potency. McDermott L, Koes D, Mohammed S, Iyer P, Boby M, Balasubramanian V, Geedy M, Katt W, Cerione R. Bioorg Med Chem Lett 29 126632 (2019)
  68. Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration. Li Y, Peer J, Zhao R, Xu Y, Wu B, Wang Y, Tian C, Huang Y, Zheng J. Transl Neurodegener 6 10 (2017)
  69. Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes. Rajapaksha H, Pandithavidana DR, Dahanayake JN. Biomolecules 11 261 (2021)
  70. Editorial Targeting glutaminase and mTOR. Tanaka K, Sasayama T, Kohmura E. Oncotarget 6 26544-26545 (2015)
  71. The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. Li Y, Ramachandran S, Nguyen TT, Stalnecker CA, Cerione RA, Erickson JW. J Biol Chem 295 1328-1337 (2020)
  72. Targeting glutaminase1 and synergizing with clinical drugs achieved more promising antitumor activity on multiple myeloma. Qiu Q, Li M, Yang L, Tang M, Zheng L, Wang F, Qiu H, Liang C, Li N, Yi D, Yi Y, Pan C, Yang S, Chen L, Hu Y. Oncotarget 10 5993-6005 (2019)
  73. The Altered Metabolic Molecular Signatures Contribute to the RAD001 Resistance in Gastric Neuroendocrine Tumor. Pan J, Bao Q, Enders G. Front Oncol 10 546 (2020)
  74. An efficient synthetic route to l-γ-methyleneglutamine and its amide derivatives, and their selective anticancer activity. Hossain MI, Thomas AG, Mahdi F, Adam AT, Akins NS, Woodard MM, Paris JJ, Slusher BS, Le HV. RSC Adv 11 7115-7128 (2021)
  75. Preclinical studies for improving radiosensitivity of non-small cell lung cancer cell lines by combining glutaminase inhibition and senolysis. Fujimoto M, Higashiyama R, Yasui H, Yamashita K, Inanami O. Transl Oncol 21 101431 (2022)
  76. High-throughput in situ perturbation of metabolite levels in the tumor micro-environment reveals favorable metabolic condition for increased fitness of infiltrated T-cells. Valvo V, Parietti E, Deans K, Ahn SW, Park NR, Ferland B, Thompson D, Dominas C, Bhagavatula SK, Davidson S, Jonas O. Front Cell Dev Biol 10 1032360 (2022)
  77. Molecular modeling and LC-MS-based metabolomics of a glutamine-valproic acid (Gln-VPA) derivative on HeLa cells. Fragoso-Vázquez MJ, Méndez-Luna D, Rosales-Hernández MC, Luna-Palencia GR, Estrada-Pérez A, Fromager B, Vásquez-Moctezuma I, Correa-Basurto J. Mol Divers 25 1077-1089 (2021)
  78. Letter Structural basis for activation and filamentation of glutaminase. Guo CJ, Wang ZX, Liu JL. Cell Res (2023)