3p5j Citations

The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease.

J Biol Chem 286 10530-9 (2011)
Related entries: 3kio, 3p56

Cited: 66 times
EuropePMC logo PMID: 21177854

Abstract

Ribonuclease H2 (RNase H2) is the major nuclear enzyme involved in the degradation of RNA/DNA hybrids and removal of ribonucleotides misincorporated in genomic DNA. Mutations in each of the three RNase H2 subunits have been implicated in a human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS). To understand how mutations impact on RNase H2 function we determined the crystal structure of the human heterotrimer. In doing so, we correct several key regions of the previously reported murine RNase H2 atomic model and provide biochemical validation for our structural model. Our results provide new insights into how the subunits are arranged to form an enzymatically active complex. In particular, we establish that the RNASEH2A C terminus is a eukaryotic adaptation for binding the two accessory subunits, with residues within it required for enzymatic activity. This C-terminal extension interacts with the RNASEH2C C terminus and both are necessary to form a stable, enzymatically active heterotrimer. Disease mutations cluster at this interface between all three subunits, destabilizing the complex and/or impairing enzyme activity. Altogether, we locate 25 out of 29 residues mutated in AGS patients, establishing a firm basis for future investigations into disease pathogenesis and function of the RNase H2 enzyme.

Articles - 3p5j mentioned but not cited (2)

  1. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. Reijns MA, Bubeck D, Gibson LC, Graham SC, Baillie GS, Jones EY, Jackson AP. J. Biol. Chem. 286 10530-10539 (2011)
  2. A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers. Lyu Y, Gong X. Molecules 25 E4353 (2020)


Reviews citing this publication (9)

  1. Processing ribonucleotides incorporated during eukaryotic DNA replication. Williams JS, Lujan SA, Kunkel TA. Nat. Rev. Mol. Cell Biol. 17 350-363 (2016)
  2. Aicardi-Goutieres syndrome: from patients to genes and beyond. Chahwan C, Chahwan R. Clin. Genet. 81 413-420 (2012)
  3. The Balancing Act of Ribonucleotides in DNA. Cerritelli SM, Crouch RJ. Trends Biochem. Sci. 41 434-445 (2016)
  4. Aicardi-Goutières syndrome: clues from the RNase H2 knock-out mouse. Rabe B. J. Mol. Med. 91 1235-1240 (2013)
  5. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Pilger D, Seymour LW, Jackson SP. Genes Dev 35 602-618 (2021)
  6. Genome integrity and disease prevention in the nervous system. McKinnon PJ. Genes Dev. 31 1180-1194 (2017)
  7. Variations in brain DNA. Avila J, Gómez-Ramos A, Soriano E. Front Aging Neurosci 6 323 (2014)
  8. Telomere and Subtelomere R-loops and Antigenic Variation in Trypanosomes. Saha A, Nanavaty VP, Li B. J Mol Biol 432 4167-4185 (2020)
  9. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. Matz KM, Guzman RM, Goodman AG. Int Rev Cell Mol Biol 345 35-136 (2019)

Articles citing this publication (55)

  1. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, Jackson AP. Cell 149 1008-1022 (2012)
  2. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. J. Exp. Med. 209 1419-1426 (2012)
  3. Lagging-strand replication shapes the mutational landscape of the genome. Reijns MAM, Kemp H, Ding J, de Procé SM, Jackson AP, Taylor MS. Nature 518 502-506 (2015)
  4. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. Günther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C, Tüngler V, Chara O, Lee YA, Hübner N, Bicknell L, Blum S, Krug C, Schmidt F, Kretschmer S, Koss S, Astell KR, Ramantani G, Bauerfeind A, Morris DL, Cunninghame Graham DS, Bubeck D, Leitch A, Ralston SH, Blackburn EA, Gahr M, Witte T, Vyse TJ, Melchers I, Mangold E, Nöthen MM, Aringer M, Kuhn A, Lüthke K, Unger L, Bley A, Lorenzi A, Isaacs JD, Alexopoulou D, Conrad K, Dahl A, Roers A, Alarcon-Riquelme ME, Jackson AP, Lee-Kirsch MA. J. Clin. Invest. 125 413-424 (2015)
  5. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. Loomis EW, Sanz LA, Chédin F, Hagerman PJ. PLoS Genet. 10 e1004294 (2014)
  6. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. Mackenzie KJ, Carroll P, Lettice L, Tarnauskaitė Ž, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP. EMBO J. 35 831-844 (2016)
  7. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K, Ward JM, Morris HD, Yan N, Crouch RJ. J. Exp. Med. 213 329-336 (2016)
  8. Ribonuclease H2 in health and disease. Reijns MA, Jackson AP. Biochem. Soc. Trans. 42 717-725 (2014)
  9. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R, Tarnauskaitė Ž, Muir M, Fluteau A, Aregger M, McEwan A, Yuan W, Clarke M, Lambros MB, Paneesha S, Moss P, Chandrashekhar M, Angers S, Moffat J, Brunton VG, Hart T, de Bono J, Stankovic T, Jackson AP, Durocher D. Nature 559 285-289 (2018)
  10. Reduction of hRNase H2 activity in Aicardi-Goutières syndrome cells leads to replication stress and genome instability. Pizzi S, Sertic S, Orcesi S, Cereda C, Bianchi M, Jackson AP, Lazzaro F, Plevani P, Muzi-Falconi M. Hum. Mol. Genet. 24 649-658 (2015)
  11. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Kasuya T, Hori S, Watanabe A, Nakajima M, Gahara Y, Rokushima M, Yanagimoto T, Kugimiya A. Sci Rep 6 30377 (2016)
  12. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutières syndrome. Kind B, Muster B, Staroske W, Herce HD, Sachse R, Rapp A, Schmidt F, Koss S, Cardoso MC, Lee-Kirsch MA. Hum. Mol. Genet. 23 5950-5960 (2014)
  13. Functional consequences of the RNase H2A subunit mutations that cause Aicardi-Goutieres syndrome. Coffin SR, Hollis T, Perrino FW. J. Biol. Chem. 286 16984-16991 (2011)
  14. Transcriptional responses to loss of RNase H2 in Saccharomyces cerevisiae. Arana ME, Kerns RT, Wharey L, Gerrish KE, Bushel PR, Kunkel TA. DNA Repair (Amst.) 11 933-941 (2012)
  15. Rare coding variants and breast cancer risk: evaluation of susceptibility Loci identified in genome-wide association studies. Zhang Y, Long J, Lu W, Shu XO, Cai Q, Zheng Y, Li C, Li B, Gao YT, Zheng W. Cancer Epidemiol. Biomarkers Prev. 23 622-628 (2014)
  16. Elucidating common structural features of human pathogenic variations using large-scale atomic-resolution protein networks. Das J, Lee HR, Sagar A, Fragoza R, Liang J, Wei X, Wang X, Mort M, Stenson PD, Cooper DN, Yu H. Hum. Mutat. 35 585-593 (2014)
  17. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Ding J, Taylor MS, Jackson AP, Reijns MA. Nat Protoc 10 1433-1444 (2015)
  18. Striking intrafamilial phenotypic variability in Aicardi-Goutières syndrome associated with the recurrent Asian founder mutation in RNASEH2C. Vogt J, Agrawal S, Ibrahim Z, Southwood TR, Philip S, Macpherson L, Bhole MV, Crow YJ, Oley C. Am. J. Med. Genet. A 161A 338-342 (2013)
  19. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome. Rice GI, Reijns MA, Coffin SR, Forte GM, Anderson BH, Szynkiewicz M, Gornall H, Gent D, Leitch A, Botella MP, Fazzi E, Gener B, Lagae L, Olivieri I, Orcesi S, Swoboda KJ, Perrino FW, Jackson AP, Crow YJ. Hum. Mutat. 34 1066-1070 (2013)
  20. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. Leen EN, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, Xu Y, Graham SC, Matthews SJ, Goodfellow IG, Curry S. PLoS Pathog. 12 e1005379 (2016)
  21. Identification of host proteins interacting with the integrin-like A domain of Toxoplasma gondii micronemal protein MIC2 by yeast-two-hybrid screening. Wang Y, Fang R, Yuan Y, Hu M, Zhou Y, Zhao J. Parasit Vectors 7 543 (2014)
  22. Activity, stability, and structure of metagenome-derived LC11-RNase H1, a homolog of Sulfolobus tokodaii RNase H1. Nguyen TN, Angkawidjaja C, Kanaya E, Koga Y, Takano K, Kanaya S. Protein Sci. 21 553-561 (2012)
  23. RNA-DNA strand exchange by the Drosophila Polycomb complex PRC2. Alecki C, Chiwara V, Sanz LA, Grau D, Arias Pérez O, Boulier EL, Armache KJ, Chédin F, Francis NJ. Nat Commun 11 1781 (2020)
  24. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. D'Alessandro G, Whelan DR, Howard SM, Vitelli V, Renaudin X, Adamowicz M, Iannelli F, Jones-Weinert CW, Lee M, Matti V, Lee WTC, Morten MJ, Venkitaraman AR, Cejka P, Rothenberg E, d'Adda di Fagagna F. Nat Commun 9 5376 (2018)
  25. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity. Mentegari E, Crespan E, Bavagnoli L, Kissova M, Bertoletti F, Sabbioneda S, Imhof R, Sturla SJ, Nilforoushan A, Hübscher U, van Loon B, Maga G. Nucleic Acids Res. 45 2600-2614 (2017)
  26. Analysis of subunit assembly and function of the Saccharomyces cerevisiae RNase H2 complex. Nguyen TA, Tak YS, Lee CH, Kang YH, Cho IT, Seo YS. FEBS J. 278 4927-4942 (2011)
  27. Structure and characterization of RNase H3 from Aquifex aeolicus. Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. FEBS J. 279 2737-2753 (2012)
  28. Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin. Hiller B, Hoppe A, Haase C, Hiller C, Schubert N, Müller W, Müller W, Reijns MAM, Reijns MAM, Jackson AP, Kunkel TA, Wenzel J, Behrendt R, Behrendt R, Roers A. Cancer Res. 78 5917-5926 (2018)
  29. Role of N-terminal extension of Bacillus stearothermophilus RNase H2 and C-terminal extension of Thermotoga maritima RNase H2. Permanasari ED, Angkawidjaja C, Koga Y, Kanaya S. FEBS J. 280 5065-5079 (2013)
  30. Unlike the Escherichia coli counterpart, archaeal RNase HII cannot process ribose monophosphate abasic sites and oxidized ribonucleotides embedded in DNA. Malfatti MC, Henneke G, Balachander S, Koh KD, Newnam G, Uehara R, Crouch RJ, Storici F, Tell G. J Biol Chem 294 13061-13072 (2019)
  31. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Neuron 109 3962-3979.e6 (2021)
  32. Identification of small-molecule inhibitors of the ribonuclease H2 enzyme. White R, Saxty B, Large J, Kettleborough CA, Jackson AP. J Biomol Screen 18 610-620 (2013)
  33. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Ž, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL. EMBO J. 37 (2018)
  34. Signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Reijns MAM, Parry DA, Williams TC, Nadeu F, Hindshaw RL, Rios Szwed DO, Nicholson MD, Carroll P, Boyle S, Royo R, Cornish AJ, Xiang H, Ridout K, Genomics England Research Consortium, Colorectal Cancer Domain UK 100,000 Genomes Project, Schuh A, Aden K, Palles C, Campo E, Stankovic T, Taylor MS, Jackson AP. Nature 602 623-631 (2022)
  35. A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei. Eisenhuth N, Vellmer T, Rauh ET, Butter F, Janzen CJ. mBio 12 e0135221 (2021)
  36. Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice. Aden K, Bartsch K, Dahl J, Reijns MAM, Esser D, Sheibani-Tezerji R, Sinha A, Wottawa F, Ito G, Mishra N, Knittler K, Burkholder A, Welz L, van Es J, Tran F, Lipinski S, Kakavand N, Boeger C, Lucius R, von Schoenfels W, Schafmayer C, Lenk L, Chalaris A, Clevers H, Röcken C, Kaleta C, Rose-John S, Schreiber S, Kunkel T, Rabe B, Rosenstiel P. Gastroenterology 156 145-159.e19 (2019)
  37. Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics. Raducanu VS, Tehseen M, Al-Amodi A, Joudeh LI, De Biasio A, Hamdan SM. Nat Commun 13 6973 (2022)
  38. Novel Escherichia coli active site dnaE alleles with altered base and sugar selectivity. Vaisman A, Łazowski K, Reijns MAM, Walsh E, McDonald JP, Moreno KC, Quiros DR, Schmidt M, Kranz H, Yang W, Makiela-Dzbenska K, Woodgate R. Mol Microbiol 116 909-925 (2021)
  39. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. Shapson-Coe A, Valeiras B, Wall C, Rada C. PLoS ONE 14 e0213553 (2019)
  40. Aicardi-Goutières syndrome gene Rnaseh2c is a metastasis susceptibility gene in breast cancer. Deasy SK, Uehara R, Vodnala SK, Yang HH, Dass RA, Hu Y, Lee MP, Crouch RJ, Hunter KW. PLoS Genet. 15 e1008020 (2019)
  41. Research Support, Non-U.S. Gov't Case Report: Novel Compound Heterozygous RNASEH2B Mutations Cause Aicardi-Goutières Syndrome. Garau J, Masnada S, Dragoni F, Sproviero D, Fogolari F, Gagliardi S, Izzo G, Varesio C, Orcesi S, Veggiotti P, Zuccotti GV, Pansarasa O, Tonduti D, Cereda C. Front Immunol 12 672952 (2021)
  42. Characterization of six recombinant human RNase H2 bearing Aicardi-Goutiéres syndrome causing mutations. Nishimura T, Baba M, Ogawa S, Kojima K, Takita T, Crouch RJ, Yasukawa K. J. Biochem. 166 537-545 (2019)
  43. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. Giordano AMS, Luciani M, Gatto F, Abou Alezz M, Beghè C, Della Volpe L, Migliara A, Valsoni S, Genua M, Dzieciatkowska M, Frati G, Tahraoui-Bories J, Giliani SC, Orcesi S, Fazzi E, Ostuni R, D'Alessandro A, Di Micco R, Merelli I, Lombardo A, Reijns MAM, Gromak N, Gritti A, Kajaste-Rudnitski A. J Exp Med 219 e20211121 (2022)
  44. Development of an RNase H2 Activity Assay for Clinical Screening. Schulz MS, Sartorius von Bach CB, Marinkovic E, Günther C, Behrendt R, Roers A. J Clin Med 12 1598 (2023)
  45. Genetic epidemiology of autoinflammatory disease variants in Indian population from 1029 whole genomes. Jain A, Bhoyar RC, Pandhare K, Mishra A, Sharma D, Imran M, Senthivel V, Divakar MK, Rophina M, Jolly B, Batra A, Sharma S, Siwach S, Jadhao AG, Palande NV, Jha GN, Ashrafi N, Mishra PK, A K V, Jain S, Dash D, Kumar NS, Vanlallawma A, Sarma RJ, Chhakchhuak L, Kalyanaraman S, Mahadevan R, Kandasamy S, B M P, Rajagopal RE, Ramya J E, Devi P N, Bajaj A, Gupta V, Mathew S, Goswami S, Mangla M, Prakash S, Joshi K, Meyakumla, S S, Gajjar D, Soraisham R, Yadav R, Devi YS, Gupta A, Mukerji M, Ramalingam S, B K B, Scaria V, Sivasubbu S. J Genet Eng Biotechnol 19 183 (2021)
  46. Genome instability consequences of RNase H2 Aicardi-Goutières syndrome alleles. Potenski CJ, Epshtein A, Bianco C, Klein HL. DNA Repair (Amst.) 102614 (2019)
  47. Molecular Genetics and Interferon Signature in the Italian Aicardi Goutières Syndrome Cohort: Report of 12 New Cases and Literature Review. Garau J, Cavallera V, Valente M, Tonduti D, Sproviero D, Zucca S, Battaglia D, Battini R, Bertini E, Cappanera S, Chiapparini L, Crasà C, Crichiutti G, Dalla Giustina E, D'Arrigo S, De Giorgis V, De Simone M, Galli J, La Piana R, Messana T, Moroni I, Nardocci N, Panteghini C, Parazzini C, Pichiecchio A, Pini A, Ricci F, Saletti V, Salvatici E, Santorelli FM, Sartori S, Tinelli F, Uggetti C, Veneselli E, Zorzi G, Garavaglia B, Fazzi E, Orcesi S, Cereda C. J Clin Med 8 (2019)
  48. Quaternary structure is an essential component that contributes to the sophisticated allosteric regulation mechanism in a key enzyme from Mycobacterium tuberculosis. Jiao W, Blackmore NJ, Nazmi AR, Parker EJ. PLoS ONE 12 e0180052 (2017)
  49. RNA/DNA structures recognized by RNase H2. Kojima K, Baba M, Tsukiashi M, Nishimura T, Yasukawa K. Brief Funct Genomics 18 169-173 (2018)
  50. RNase H2, mutated in Aicardi-Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Cristini A, Tellier M, Constantinescu F, Accalai C, Albulescu LO, Heiringhoff R, Bery N, Sordet O, Murphy S, Gromak N. Nat Commun 13 2961 (2022)
  51. RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Dai B, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J, Zhang L. Oncol. Rep. 36 173-180 (2016)
  52. Ribonuclease H2 Subunit A Preserves Genomic Integrity and Promotes Prostate Cancer Progression. Kimura N, Takayama KI, Yamada Y, Kume H, Fujimura T, Inoue S. Cancer Res Commun 2 870-883 (2022)
  53. SP1/RNASEH2A accelerates the development of hepatocellular carcinoma by regulating EMT. Hao Y, Zou R, Tao J, Jiang M, Li D. Heliyon 9 e18127 (2023)
  54. Topoisomerase 1-dependent R-loop deficiency drives accelerated replication and genomic instability. Sarni D, Barroso S, Shtrikman A, Irony-Tur Sinai M, Oren YS, Aguilera A, Kerem B. Cell Rep 40 111397 (2022)
  55. Val143 of human ribonuclease H2 is not critical for, but plays a role in determining catalytic activity and substrate specificity. Baba M, Kojima K, Nishimura T, Sugiura T, Takita T, Uehara R, Crouch RJ, Yasukawa K. PLoS One 15 e0228774 (2020)


Related citations provided by authors (1)