3ovl Citations

Towards a pharmacophore for amyloid.

Abstract

Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases.

Reviews - 3ovl mentioned but not cited (2)

  1. NMR Meets Tau: Insights into Its Function and Pathology. Lippens G, Landrieu I, Smet C, Huvent I, Huvent I, Gandhi NS, Gigant B, Despres C, Qi H, Lopez J. Biomolecules 6 (2016)
  2. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Molecules 28 4544 (2023)

Articles - 3ovl mentioned but not cited (9)

  1. Towards a pharmacophore for amyloid. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L, Sievers SA, Liu J, Barrio JR, Eisenberg D. PLoS Biol. 9 e1001080 (2011)
  2. Tau-derived-hexapeptide 306VQIVYK311 aggregation inhibitors: nitrocatechol moiety as a pharmacophore in drug design. Mohamed T, Hoang T, Jelokhani-Niaraki M, Rao PP. ACS Chem Neurosci 4 1559-1570 (2013)
  3. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor. Cornejo A, Salgado F, Caballero J, Vargas R, Simirgiotis M, Areche C. Int J Mol Sci 17 (2016)
  4. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy. Fitzpatrick AW, Vanacore GM, Zewail AH. Proc. Natl. Acad. Sci. U.S.A. 112 3380-3385 (2015)
  5. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer's disease. Cornejo A, Aguilar Sandoval F, Caballero L, Machuca L, Muñoz P, Caballero J, Perry G, Ardiles A, Areche C, Melo F. J Enzyme Inhib Med Chem 32 945-953 (2017)
  6. The zipper groups of the amyloid state of proteins. Stroud JC. Acta Crystallogr. D Biol. Crystallogr. 69 540-545 (2013)
  7. Filamentous Aggregates of Tau Proteins Fulfil Standard Amyloid Criteria Provided by the Fuzzy Oil Drop (FOD) Model. Dułak D, Gadzała M, Banach M, Ptak M, Wiśniowski Z, Konieczny L, Roterman I. Int J Mol Sci 19 (2018)
  8. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Walton-Raaby M, Woods R, Kalyaanamoorthy S. Int J Mol Sci 24 9476 (2023)
  9. MELD-accelerated molecular dynamics help determine amyloid fibril structures. Sharma B, Dill KA. Commun Biol 4 942 (2021)


Reviews citing this publication (25)

  1. Structural Studies of Amyloid Proteins at the Molecular Level. Eisenberg DS, Sawaya MR. Annu. Rev. Biochem. 86 69-95 (2017)
  2. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR, Bellomo A, Pilotto A, Daniele A, Greco A, Logroscino G. Biomed Res Int 2016 3245935 (2016)
  3. Clinical development of curcumin in neurodegenerative disease. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA. Expert Rev Neurother 15 629-637 (2015)
  4. Amyloid-β positron emission tomography imaging probes: a critical review. Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang SC, Satyamurthy N, Doudet D, Mishani E, Cohen RM, Høilund-Carlsen PF, Alavi A, Barrio JR. J. Alzheimers Dis. 36 613-631 (2013)
  5. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery. Bu XL, Rao PPN, Wang YJ. Mol. Neurobiol. 53 3565-3575 (2016)
  6. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models. Attar A, Bitan G. Curr. Pharm. Des. 20 2469-2483 (2014)
  7. Structure and mechanism of action of tau aggregation inhibitors. Cisek K, Cooper GL, Huseby CJ, Kuret J. Curr Alzheimer Res 11 918-927 (2014)
  8. A flash in the pan: dissecting dynamic amyloid intermediates using fluorescence. Nath A, Rhoades E. FEBS Lett. 587 1096-1105 (2013)
  9. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Shetty D, Kim YJ, Shim H, Snyder JP. Molecules 20 249-292 (2014)
  10. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Giacomelli C, Daniele S, Martini C. Biochem. Pharmacol. 131 1-15 (2017)
  11. Natural product-based amyloid inhibitors. Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Biochem. Pharmacol. 139 40-55 (2017)
  12. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. Jouanne M, Rault S, Voisin-Chiret AS. Eur J Med Chem 139 153-167 (2017)
  13. Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium. Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F. Expert Rev Neurother 16 259-277 (2016)
  14. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)
  15. Pharmacological Modulators of Tau Aggregation and Spreading. Dominguez-Meijide A, Vasili E, Outeiro TF. Brain Sci 10 E858 (2020)
  16. What amyloid ligands can tell us about molecular polymorphism and disease. LeVine H, Walker LC. Neurobiol. Aging 42 205-212 (2016)
  17. Interactions between Microtubule-Associated Protein Tau (MAPT) and Small Molecules. Rauch JN, Olson SH, Gestwicki JE. Cold Spring Harb Perspect Med 7 (2017)
  18. The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin. Mukherjee S, Mishra AK, Peer GDG, Bagabir SA, Haque S, Pandey RP, Raj VS, Jain N, Pandey A, Kar SK. Front Aging Neurosci 13 767493 (2021)
  19. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Fichou Y, Al-Hilaly YK, Devred F, Smet-Nocca C, Tsvetkov PO, Verelst J, Winderickx J, Geukens N, Vanmechelen E, Perrotin A, Serpell L, Hanseeuw BJ, Medina M, Buée L, Landrieu I. Acta Neuropathol Commun 7 31 (2019)
  20. Untangling the Tauopathy for Alzheimer's disease and parkinsonism. Chang HY, Sang TK, Chiang AS. J. Biomed. Sci. 25 54 (2018)
  21. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Mohammadi Z, Alizadeh H, Marton J, Cumming P. Biomolecules 13 290 (2023)
  22. A review of curcumin as a biological stain and as a self-visualizing pharmaceutical agent. Hope-Roberts M, Horobin RW. Biotech Histochem 92 315-323 (2017)
  23. Elucidating Tau function and dysfunction in the era of cryo-EM. Lippens G, Gigant B. J. Biol. Chem. 294 9316-9325 (2019)
  24. General lack of structural characterization of chemically synthesized long peptides. Boutin JA, Tartar AL, van Dorsselaer A, Vaudry H. Protein Sci 28 857-867 (2019)
  25. Translational opportunities for amyloid-targeting fluorophores. Cao KJ, Yang J. Chem. Commun. (Camb.) 54 9107-9118 (2018)

Articles citing this publication (62)

  1. Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer's and Parkinson's disease patients. Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG. Brain Pathol 24 25-32 (2014)
  2. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, Giza CC, Fitzsimmons RP, Omalu B, Bailes J, Kepe V. Proc. Natl. Acad. Sci. U.S.A. 112 E2039-47 (2015)
  3. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R. Hum. Mol. Genet. 21 3587-3603 (2012)
  4. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Teng E, Hu S, Chen PP, Maiti P, Teter B, Cole GM, Frautschy SA. J. Biol. Chem. 288 4056-4065 (2013)
  5. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, Moore A, Ran C. J. Am. Chem. Soc. 135 16397-16409 (2013)
  6. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Elife 2 e00857 (2013)
  7. Resolution of oligomeric species during the aggregation of Aβ1-40 using (19)F NMR. Suzuki Y, Brender JR, Soper MT, Krishnamoorthy J, Zhou Y, Ruotolo BT, Kotov NA, Ramamoorthy A, Marsh EN. Biochemistry 52 1903-1912 (2013)
  8. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, Mazziotta JC, Mendez MF, Donoghue N, Small GW, Barrio JR. J. Alzheimers Dis. 36 145-153 (2013)
  9. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Fitzpatrick AW, Park ST, Zewail AH. Proc. Natl. Acad. Sci. U.S.A. 110 10976-10981 (2013)
  10. Disordered binding of small molecules to Aβ(12-28). Convertino M, Vitalis A, Caflisch A. J. Biol. Chem. 286 41578-41588 (2011)
  11. Curcumin Binding to Beta Amyloid: A Computational Study. Rao PP, Mohamed T, Teckwani K, Tin G. Chem Biol Drug Des 86 813-820 (2015)
  12. Postmortem 3-D brain hemisphere cortical tau and amyloid-β pathology mapping and quantification as a validation method of neuropathology imaging. Smid LM, Kepe V, Vinters HV, Bresjanac M, Toyokuni T, Satyamurthy N, Wong KP, Huang SC, Silverman DH, Miller K, Small GW, Barrio JR. J. Alzheimers Dis. 36 261-274 (2013)
  13. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Guzior N, Bajda M, Skrok M, Kurpiewska K, Lewiński K, Brus B, Pišlar A, Kos J, Gobec S, Malawska B. Eur J Med Chem 92 738-749 (2015)
  14. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. Berhanu WM, Masunov AE. J. Biomol. Struct. Dyn. 33 1399-1411 (2015)
  15. Cyclic peptides as inhibitors of amyloid fibrillation. Luo J, Abrahams JP. Chemistry 20 2410-2419 (2014)
  16. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau. Meng SR, Zhu YZ, Guo T, Liu XL, Chen J, Liang Y. PLoS ONE 7 e38903 (2012)
  17. The flavonoid derivative 2-(4' Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: insights from in silico and in vivo studies. Singh SK, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S. Neurotox Res 26 331-350 (2014)
  18. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide. Bellucci L, Ardèvol A, Parrinello M, Lutz H, Lu H, Weidner T, Corni S. Nanoscale 8 8737-8748 (2016)
  19. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities. Petric A, Johnson SA, Pham HV, Li Y, Ceh S, Golobic A, Agdeppa ED, Timbol G, Liu J, Keum G, Satyamurthy N, Kepe V, Houk KN, Barrio JR. Proc. Natl. Acad. Sci. U.S.A. 109 16492-16497 (2012)
  20. Inhibiting and reversing amyloid-β peptide (1-40) fibril formation with gramicidin S and engineered analogues. Luo J, Otero JM, Yu CH, Wärmländer SK, Gräslund A, Overhand M, Abrahams JP. Chemistry 19 17338-17348 (2013)
  21. Interaction of Aβ(25-35) fibrillation products with mitochondria: Effect of small-molecule natural products. Ghobeh M, Ahmadian S, Meratan AA, Ebrahim-Habibi A, Ghasemi A, Shafizadeh M, Nemat-Gorgani M. Biopolymers 102 473-486 (2014)
  22. Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Lockhart C, Klimov DK. Biophys. J. 103 2341-2351 (2012)
  23. How curcumin affords effective protection against amyloid fibrillation in insulin. Rabiee A, Ebrahim-Habibi A, Ghasemi A, Nemat-Gorgani M. Food Funct 4 1474-1480 (2013)
  24. Inhibiting amyloid β-protein assembly: Size-activity relationships among grape seed-derived polyphenols. Hayden EY, Yamin G, Beroukhim S, Chen B, Kibalchenko M, Jiang L, Ho L, Wang J, Pasinetti GM, Teplow DB. J. Neurochem. 135 416-430 (2015)
  25. Transferrin receptor targeting by de novo sheet extension. Sahtoe DD, Coscia A, Mustafaoglu N, Miller LM, Olal D, Vulovic I, Yu TY, Goreshnik I, Lin YR, Clark L, Busch F, Stewart L, Wysocki VH, Ingber DE, Abraham J, Baker D. Proc Natl Acad Sci U S A 118 e2021569118 (2021)
  26. Atomic structures of corkscrew-forming segments of SOD1 reveal varied oligomer conformations. Sangwan S, Sawaya MR, Murray KA, Hughes MP, Eisenberg DS. Protein Sci. 27 1231-1242 (2018)
  27. Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. Kouza M, Co NT, Li MS, Kmiecik S, Kolinski A, Kloczkowski A, Buhimschi IA. J Chem Phys 148 215106 (2018)
  28. Myricetin slows liquid-liquid phase separation of Tau and activates ATG5-dependent autophagy to suppress Tau toxicity. Dai B, Zhong T, Chen ZX, Chen W, Zhang N, Liu XL, Wang LQ, Chen J, Liang Y. J Biol Chem 297 101222 (2021)
  29. Photoluminescent Peptide-Based Nanostructures as FRET Donor for Fluorophore Dye. Diaferia C, Sibillano T, Giannini C, Roviello V, Vitagliano L, Morelli G, Accardo A. Chemistry 23 8741-8748 (2017)
  30. Tau Antibody Structure Reveals a Molecular Switch Defining a Pathological Conformation of the Tau Protein. Chukwu JE, Pedersen JT, Pedersen LØ, Volbracht C, Sigurdsson EM, Kong XP. Sci Rep 8 6209 (2018)
  31. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures. Sablón-Carrazana M, Fernández I, Bencomo A, Lara-Martínez R, Rivera-Marrero S, Domínguez G, Pérez-Perera R, Jiménez-García LF, Altamirano-Bustamante NF, Diaz-Delgado M, Vedrenne F, Rivillas-Acevedo L, Pasten-Hidalgo K, Segura-Valdez Mde L, Islas-Andrade S, Garrido-Magaña E, Perera-Pintado A, Prats-Capote A, Rodríguez-Tanty C, Altamirano-Bustamante MM. PLoS ONE 10 e0135292 (2015)
  32. Fibpredictor: a computational method for rapid prediction of amyloid fibril structures. Tabatabaei Ghomi H, Topp EM, Lill MA. J Mol Model 22 206 (2016)
  33. Lifting the veil on amyloid drug design. Tiller KE, Tessier PM. Elife 2 e01089 (2013)
  34. Solvation-Guided Design of Fluorescent Probes for Discrimination of Amyloids. Cao KJ, Elbel KM, Cifelli JL, Cirera J, Sigurdson CJ, Paesani F, Theodorakis EA, Yang J. Sci Rep 8 6950 (2018)
  35. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution. Mirza Z, Pillai VG, Zhong WZ. Int J Mol Sci 15 4221-4236 (2014)
  36. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1-42. Hernández-Rodríguez M, Correa-Basurto J, Nicolás-Vázquez MI, Miranda-Ruvalcaba R, Benítez-Cardoza CG, Reséndiz-Albor AA, Méndez-Méndez JV, Rosales-Hernández MC. PLoS ONE 10 e0130263 (2015)
  37. Comparative evaluation of Logan and relative-equilibrium graphical methods for parametric imaging of dynamic [18F]FDDNP PET determinations. Wong KP, Kepe V, Dahlbom M, Satyamurthy N, Small GW, Barrio JR, Huang SC. Neuroimage 60 241-251 (2012)
  38. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Cell 186 3350-3367.e19 (2023)
  39. Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1-40) Monomers by Means of Molecular Dynamics. Tavanti F, Pedone A, Menziani MC. Int J Mol Sci 21 (2020)
  40. Interplay between epigallocatechin-3-gallate and ionic strength during amyloid aggregation. Ziaunys M, Mikalauskaite K, Sakalauskas A, Smirnovas V. PeerJ 9 e12381 (2021)
  41. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. J Phys Chem C Nanomater Interfaces 121 23974-23987 (2017)
  42. Stimulation of synaptoneurosome glutamate release by monomeric and fibrillated α-synuclein. Sarafian TA, Littlejohn K, Yuan S, Fernandez C, Cilluffo M, Koo BK, Whitelegge JP, Watson JB. J. Neurosci. Res. 95 1871-1887 (2017)
  43. Structure and Conservation of Amyloid Spines From the Candida albicans Als5 Adhesin. Golan N, Schwartz-Perov S, Landau M, Lipke PN. Front Mol Biosci 9 926959 (2022)
  44. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition. Chan KH, Xue B, Robinson RC, Hauser CAE. Sci Rep 7 12897 (2017)
  45. Computational Insights Into the Inhibition Mechanism of Proanthocyanidin B2 on Tau Hexapeptide (PHF6) Oligomer. Li Q, Xiong C, Liu H, Ge H, Yao X, Liu H. Front Chem 9 666043 (2021)
  46. Conservation of the Amyloid Interactome Across Diverse Fibrillar Structures. Juhl DW, Risør MW, Scavenius C, Rasmussen CB, Otzen D, Nielsen NC, Enghild JJ. Sci Rep 9 3863 (2019)
  47. Continental and Antarctic Lichens: isolation, identification and molecular modeling of the depside tenuiorin from the Antarctic lichen Umbilicaria antarctica as tau protein inhibitor. Salgado F, Caballero J, Vargas R, Cornejo A, Areche C. Nat. Prod. Res. 1-5 (2018)
  48. Curcumin-Piperlongumine Hybrids with a Multitarget Profile Elicit Neuroprotection in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Cores Á, Carmona-Zafra N, Martín-Cámara O, Sánchez JD, Duarte P, Villacampa M, Bermejo-Bescós P, Martín-Aragón S, León R, Menéndez JC. Antioxidants (Basel) 11 28 (2021)
  49. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ. Rojas AV, Maisuradze GG, Scheraga HA. J Phys Chem B 122 7049-7056 (2018)
  50. Diabetes Drug Discovery: hIAPP1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets. Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P, Marrero SR, Revilla-Monsalve C, Valdés-Sosa P, Salamanca-Gómez F, Garrido-Magaña E, Rodríguez-Tanty C, Altamirano-Bustamante MM. Molecules 23 (2018)
  51. Epitope alteration by small molecules and applications in drug discovery. Zhu B, Yang J, Van R, Yang F, Yu Y, Yu A, Ran K, Yin K, Liang Y, Shen X, Yin W, Choi SH, Lu Y, Wang C, Shao Y, Shi L, Tanzi RE, Zhang C, Cheng Y, Zhang Z, Ran C. Chem Sci 13 8104-8116 (2022)
  52. Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, Zhao J, Chen J, Chen S, Lippens G, Zhang F, Linhardt R, Wang C, Klärner FG, Schrader T, Landrieu I, Bitan G, Smet-Nocca C. ACS Chem. Biol. 14 1363-1379 (2019)
  53. Modeling the Inhibition Kinetics of Curcumin, Orange G, and Resveratrol with Amyloid-β Peptide. Madhuranthakam CMR, Shakeri A, Rao PPN. ACS Omega 6 8680-8686 (2021)
  54. Potential Therapeutic Approaches to Alzheimer's Disease By Bioinformatics, Cheminformatics And Predicted Adme-Tox Tools. Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Curr Neuropharmacol 18 696-719 (2020)
  55. Repurposing Triphenylmethane Dyes to Bind to Trimers Derived from Aβ. Salveson PJ, Haerianardakani S, Thuy-Boun A, Yoo S, Kreutzer AG, Demeler B, Nowick JS. J. Am. Chem. Soc. 140 11745-11754 (2018)
  56. Structural Analysis of a Trimer of β2-Microgloblin Fragment by Molecular Dynamics Simulations. Nishikawa N, Sakae Y, Gouda T, Tsujimura Y, Okamoto Y. Biophys J 116 781-790 (2019)
  57. Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities. Louros N, Orlando G, De Vleeschouwer M, Rousseau F, Schymkowitz J. Nat Commun 11 3314 (2020)
  58. Subresidue-Resolution Footprinting of Ligand-Protein Interactions by Carbene Chemistry and Ion Mobility-Mass Spectrometry. Lu G, Xu X, Li G, Sun H, Wang N, Zhu Y, Wan N, Shi Y, Wang G, Li L, Hao H, Hao H, Ye H. Anal Chem 92 947-956 (2020)
  59. Tau-PET imaging as a molecular modality for Alzheimer's disease. Ayubcha C, Rigney G, Borja AJ, Werner T, Alavi A. Am J Nucl Med Mol Imaging 11 374-386 (2021)
  60. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. Nat Commun 13 4356 (2022)
  61. Thwarting amyloid fibers. Kaganman I. Nat. Methods 8 615 (2011)
  62. What can we learn from β-cell failure biomarker application in diabetes in childhood? A systematic review. Calderón-Hernández MF, Altamirano-Bustamante NF, Revilla-Monsalve C, Mosquera-Andrade MB, Altamirano-Bustamante MM. World J Diabetes 12 1325-1362 (2021)