3n3a Citations

Structural basis for activation of class Ib ribonucleotide reductase.

Science 329 1526-30 (2010)
Related entries: 3n37, 3n38, 3n39, 3n3b

Cited: 83 times
EuropePMC logo PMID: 20688982

Abstract

The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn(III)2-tyrosyl radical (Y•) or a Fe(III)2-Y• cofactor in the NrdF subunit. Whereas Fe(III)2-Y• can self-assemble from Fe(II)2-NrdF and O2, activation of Mn(II)2-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O2. The crystal structures reported here of E. coli Mn(II)2-NrdF and Fe(II)2-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn(II)2-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn(II)2 active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn(III)2-Y• cofactor assembly.

Reviews - 3n3a mentioned but not cited (3)

Articles - 3n3a mentioned but not cited (5)

  1. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Blaesi EJ, Palowitch GM, Hu K, Kim AJ, Rose HR, Alapati R, Lougee MG, Kim HJ, Taguchi AT, Tan KO, Laremore TN, Griffin RG, Krebs C, Matthews ML, Silakov A, Bollinger JM, Allen BD, Boal AK. Proc Natl Acad Sci U S A 115 10022-10027 (2018)
  2. Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens. Srinivas V, Lebrette H, Lundin D, Kutin Y, Sahlin M, Lerche M, Eirich J, Branca RMM, Cox N, Sjöberg BM, Högbom M. Nature 563 416-420 (2018)
  3. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. Hassan SS, Tiwari S, Guimarães LC, Jamal SB, Folador E, Sharma NB, de Castro Soares S, Almeida S, Ali A, Islam A, Póvoa FD, de Abreu VA, Jain N, Bhattacharya A, Juneja L, Miyoshi A, Silva A, Barh D, Turjanski A, Azevedo V, Ferreira RS. BMC Genomics 15 Suppl 7 S3 (2014)
  4. Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access. Grāve K, Lambert W, Berggren G, Griese JJ, Bennett MD, Logan DT, Högbom M. J Biol Inorg Chem 24 849-861 (2019)
  5. Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b-NrdI complex monitored by serial femtosecond crystallography. John J, Aurelius O, Srinivas V, Saura P, Kim IS, Bhowmick A, Simon PS, Dasgupta M, Pham C, Gul S, Sutherlin KD, Aller P, Butryn A, Orville AM, Cheah MH, Owada S, Tono K, Fuller FD, Batyuk A, Brewster AS, Sauter NK, Yachandra VK, Yano J, Kaila VRI, Kern J, Lebrette H, Högbom M. Elife 11 e79226 (2022)


Reviews citing this publication (18)

  1. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Cotruvo JA, Stubbe J. Annu Rev Biochem 80 733-767 (2011)
  2. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Merchant SS, Helmann JD. Adv Microb Physiol 60 91-210 (2012)
  3. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Annu Rev Biochem 89 45-75 (2020)
  4. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Krebs C, Bollinger JM, Booker SJ. Curr Opin Chem Biol 15 291-303 (2011)
  5. ROS homeostasis during development: an evolutionary conserved strategy. Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. Cell Mol Life Sci 69 3245-3257 (2012)
  6. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear--an intricate bioinorganic workaround to use different metals for the same reaction. Högbom M. Metallomics 3 110-120 (2011)
  7. Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Stubbe J, Cotruvo JA. Curr Opin Chem Biol 15 284-290 (2011)
  8. Emergence of metal selectivity and promiscuity in metalloenzymes. Eom H, Song WJ. J Biol Inorg Chem 24 517-531 (2019)
  9. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site. Banerjee R, Lipscomb JD. Acc Chem Res 54 2185-2195 (2021)
  10. Mechanisms for control of biological electron transfer reactions. Williamson HR, Dow BA, Davidson VL. Bioorg Chem 57 213-221 (2014)
  11. Molecular architectures and functions of radical enzymes and their (re)activating proteins. Shibata N, Toraya T. J Biochem 158 271-292 (2015)
  12. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. Griese JJ, Srinivas V, Högbom M. J Biol Inorg Chem 19 759-774 (2014)
  13. Metalation: nature's challenge in bioinorganic chemistry. Robinson NJ, Glasfeld A. J Biol Inorg Chem 25 543-545 (2020)
  14. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. J Biol Inorg Chem 22 221-235 (2017)
  15. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. Balamurugan M, Saravanan N, Ha H, Lee YH, Nam KT. Nano Converg 5 18 (2018)
  16. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals. Kawano T, Kagenishi T, Kadono T, Bouteau F, Hiramatsu T, Lin C, Tanaka K, Tanaka L, Mancuso S, Uezu K, Okobira T, Furukawa H, Iwase J, Inokuchi R, Baluška F, Yokawa K. Commun Integr Biol 8 e1000710 (2015)
  17. Managing Manganese: The Role of Manganese Homeostasis in Streptococcal Pathogenesis. Aggarwal S, Kumaraswami M. Front Cell Dev Biol 10 921920 (2022)
  18. Why is manganese so valuable to bacterial pathogens? Čapek J, Večerek B. Front Cell Infect Microbiol 13 943390 (2023)

Articles citing this publication (57)

  1. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Netz DJ, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ. Nat Chem Biol 8 125-132 (2011)
  2. The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Martin JE, Imlay JA. Mol Microbiol 80 319-334 (2011)
  3. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. Hayden JA, Brophy MB, Cunden LS, Nolan EM. J Am Chem Soc 135 775-787 (2013)
  4. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo. Cotruvo JA, Stubbe J. Biochemistry 50 1672-1681 (2011)
  5. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. Cotruvo JA, Stich TA, Britt RD, Stubbe J. J Am Chem Soc 135 4027-4039 (2013)
  6. Use of structural phylogenetic networks for classification of the ferritin-like superfamily. Lundin D, Poole AM, Sjöberg BM, Högbom M. J Biol Chem 287 20565-20575 (2012)
  7. Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Zhang Y, Stubbe J. Biochemistry 50 5615-5623 (2011)
  8. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway. Makris TM, Vu VV, Meier KK, Komor AJ, Rivard BS, Münck E, Que L, Lipscomb JD. J Am Chem Soc 137 1608-1617 (2015)
  9. Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. Pandelia ME, Li N, Nørgaard H, Warui DM, Rajakovich LJ, Chang WC, Booker SJ, Krebs C, Bollinger JM. J Am Chem Soc 135 15801-15812 (2013)
  10. Characterization of metastable intermediates formed in the reaction between a Mn(II) complex and dioxygen, including a crystallographic structure of a binuclear Mn(III)-peroxo species. Coggins MK, Sun X, Kwak Y, Solomon EI, Rybak-Akimova E, Kovacs JA. J Am Chem Soc 135 5631-5640 (2013)
  11. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. Johnson MD, Kehl-Fie TE, Rosch JW. Metallomics 7 786-794 (2015)
  12. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. Makhlynets O, Boal AK, Rhodes DV, Kitten T, Rosenzweig AC, Stubbe J. J Biol Chem 289 6259-6272 (2014)
  13. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS. PLoS One 6 e28197 (2011)
  14. NrdH-redoxin protein mediates high enzyme activity in manganese-reconstituted ribonucleotide reductase from Bacillus anthracis. Crona M, Torrents E, Røhr AK, Hofer A, Furrer E, Tomter AB, Andersson KK, Sahlin M, Sjöberg BM. J Biol Chem 286 33053-33060 (2011)
  15. Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis. Dassama LM, Krebs C, Bollinger JM, Rosenzweig AC, Boal AK. Biochemistry 52 6424-6436 (2013)
  16. Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Lopez N, Graham DJ, McGuire R, Alliger GE, Shao-Horn Y, Cummins CC, Nocera DG. Science 335 450-453 (2012)
  17. Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Rose HR, Ghosh MK, Maggiolo AO, Pollock CJ, Blaesi EJ, Hajj V, Wei Y, Rajakovich LJ, Chang WC, Han Y, Hajj M, Krebs C, Silakov A, Pandelia ME, Bollinger JM, Boal AK. Biochemistry 57 2679-2693 (2018)
  18. Correlation between structural, spectroscopic, and reactivity properties within a series of structurally analogous metastable manganese(III)-alkylperoxo complexes. Coggins MK, Martin-Diaconescu V, DeBeer S, Kovacs JA. J Am Chem Soc 135 4260-4272 (2013)
  19. Structural and spectroscopic characterization of metastable thiolate-ligated manganese(III)-alkylperoxo species. Coggins MK, Kovacs JA. J Am Chem Soc 133 12470-12473 (2011)
  20. The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase. Boal AK, Cotruvo JA, Stubbe J, Rosenzweig AC. Biochemistry 51 3861-3871 (2012)
  21. Ligation of D1-His332 and D1-Asp170 to the manganese cluster of photosystem II from Synechocystis assessed by multifrequency pulse EPR spectroscopy. Stich TA, Yeagle GJ, Service RJ, Debus RJ, Britt RD. Biochemistry 50 7390-7404 (2011)
  22. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. Sigfridsson KGV, Chernev P, Leidel N, Popović-Bijelić A, Gräslund A, Haumann M. J Biol Chem 288 9648-9661 (2013)
  23. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. Griese JJ, Kositzki R, Schrapers P, Branca RM, Nordström A, Lehtiö J, Haumann M, Högbom M. J Biol Chem 290 25254-25272 (2015)
  24. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. J Am Chem Soc 139 1950-1957 (2017)
  25. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress. Ardini M, Fiorillo A, Fittipaldi M, Stefanini S, Gatteschi D, Ilari A, Chiancone E. Biochim Biophys Acta 1830 3745-3755 (2013)
  26. Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein. Tomter AB, Zoppellaro G, Bell CB, Barra AL, Andersen NH, Solomon EI, Andersson KK. PLoS One 7 e33436 (2012)
  27. Characterization and dioxygen reactivity of a new series of coordinatively unsaturated thiolate-ligated manganese(II) complexes. Coggins MK, Toledo S, Shaffer E, Kaminsky W, Shearer J, Kovacs JA. Inorg Chem 51 6633-6644 (2012)
  28. Reaction landscape of a pentadentate N5-ligated Mn(II) complex with O2˙- and H2O2 includes conversion of a peroxomanganese(III) adduct to a bis(μ-oxo)dimanganese(III,IV) species. Leto DF, Chattopadhyay S, Day VW, Jackson TA. Dalton Trans 42 13014-13025 (2013)
  29. Biofilm modifies expression of ribonucleotide reductase genes in Escherichia coli. Cendra Mdel M, Juárez A, Torrents E. PLoS One 7 e46350 (2012)
  30. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. Kisgeropoulos EC, Griese JJ, Smith ZR, Branca RMM, Schneider CR, Högbom M, Shafaat HS. J Am Chem Soc 142 5338-5354 (2020)
  31. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. Grāve K, Griese JJ, Berggren G, Bennett MD, Högbom M. J Biol Inorg Chem 25 571-582 (2020)
  32. Implications of the inability of Listeria monocytogenes EGD-e to grow anaerobically due to a deletion in the class III NrdD ribonucleotide reductase for its use as a model laboratory strain. Ofer A, Kreft J, Logan DT, Cohen G, Borovok I, Aharonowitz Y. J Bacteriol 193 2931-2940 (2011)
  33. Semiquinone-induced maturation of Bacillus anthracis ribonucleotide reductase by a superoxide intermediate. Berggren G, Duraffourg N, Sahlin M, Sjöberg BM. J Biol Chem 289 31940-31949 (2014)
  34. Biochemistry. A never-ending story. Sjöberg BM. Science 329 1475-1476 (2010)
  35. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study. Han WG, Sandala GM, Giammona DA, Bashford D, Noodleman L. Dalton Trans 40 11164-11175 (2011)
  36. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. Lou M, Liu Q, Ren G, Zeng J, Xiang X, Ding Y, Lin Q, Zhong T, Liu X, Zhu L, Qi H, Shen J, Li H, Shao J. J Biol Chem 292 9136-9149 (2017)
  37. A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers. Roos K, Siegbahn PE. J Biol Inorg Chem 17 363-373 (2012)
  38. NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum dimerizes at high protein concentration and exclusively receives electrons from thioredoxin reductase. Van Laer K, Dziewulska AM, Fislage M, Wahni K, Hbeddou A, Collet JF, Versées W, Mateos LM, Tamu Dufe V, Messens J. J Biol Chem 288 7942-7955 (2013)
  39. Radicals in Biology: Your Life Is in Their Hands. Stubbe J, Nocera DG. J Am Chem Soc 143 13463-13472 (2021)
  40. The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits. Hammerstad M, Røhr AK, Andersen NH, Gräslund A, Högbom M, Andersson KK. J Biol Inorg Chem 19 893-902 (2014)
  41. Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading. Rozman Grinberg I, Berglund S, Hasan M, Lundin D, Ho FM, Magnuson A, Logan DT, Sjöberg BM, Berggren G. J Biol Inorg Chem 24 863-877 (2019)
  42. Manganese, the stress reliever. Latour JM. Metallomics 7 25-28 (2015)
  43. Superoxide generation catalyzed by the ozone-inducible plant peptides analogous to prion octarepeat motif. Yokawa K, Kagenishi T, Kawano T. Plant Signal Behav 6 477-482 (2011)
  44. X-ray reduction correlates with soaking accessibility as judged from four non-crystallographically related diiron sites. Griese JJ, Högbom M. Metallomics 4 894-898 (2012)
  45. A ribonucleotide reductase-like electron transfer system in the nitroaryl-forming N-oxygenase AurF. Fries A, Bretschneider T, Winkler R, Hertweck C. Chembiochem 12 1832-1835 (2011)
  46. Mimicking Class I b Mn2 -Ribonucleotide Reductase: A MnII2 Complex and Its Reaction with Superoxide. Magherusan AM, Zhou A, Farquhar ER, García-Melchor M, Twamley B, Que L, McDonald AR. Angew Chem Int Ed Engl 57 918-922 (2018)
  47. A MnII MnIII -Peroxide Complex Capable of Aldehyde Deformylation. Magherusan AM, Kal S, Nelis DN, Doyle LM, Farquhar ER, Que L, McDonald AR. Angew Chem Int Ed Engl 58 5718-5722 (2019)
  48. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides. Inokuchi R, Kawano T. Commun Integr Biol 9 e1156277 (2016)
  49. Structure of a ribonucleotide reductase R2 protein radical. Lebrette H, Srinivas V, John J, Aurelius O, Kumar R, Lundin D, Brewster AS, Bhowmick A, Sirohiwal A, Kim IS, Gul S, Pham C, Sutherlin KD, Simon P, Butryn A, Aller P, Orville AM, Fuller FD, Alonso-Mori R, Batyuk A, Sauter NK, Yachandra VK, Yano J, Kaila VRI, Sjöberg BM, Kern J, Roos K, Högbom M. Science 382 109-113 (2023)
  50. Thioredoxin reductase from Bacillus cereus exhibits distinct reduction and NADPH-binding properties. Shoor M, Gudim I, Hersleth HP, Hammerstad M. FEBS Open Bio 11 3019-3031 (2021)
  51. A Research-inspired biochemistry laboratory module-combining expression, purification, crystallization, structure-solving, and characterization of a flavodoxin-like protein. Hammerstad M, Røhr ÅK, Hersleth HP. Biochem Mol Biol Educ 47 318-332 (2019)
  52. Catechol oxidase activity of comparable dimanganese and dicopper complexes. Magherusan AM, Nelis DN, Twamley B, McDonald AR. Dalton Trans 47 15555-15564 (2018)
  53. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. Powell MM, Rao G, Britt RD, Rittle J. J Am Chem Soc 145 16526-16537 (2023)
  54. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Banerjee R, Srinivas V, Lebrette H. Subcell Biochem 99 109-153 (2022)
  55. Functional Diversity of Homologous Oxidoreductases-Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction. Hammerstad M, Rugtveit AK, Dahlen S, Andersen HK, Hersleth HP. Antioxidants (Basel) 12 1224 (2023)
  56. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase. Sohn YS, Lee SG, Lee KH, Ku B, Shin HC, Cha SS, Kim YG, Lee HS, Kang SG, Oh BH. PLoS One 11 e0167549 (2016)
  57. Mechanism of DOPA radical generation and transfer in metal-free class Ie ribonucleotide reductase based on density functional theory. Zou J, Chen Y, Feng W. Comput Struct Biotechnol J 20 1111-1131 (2022)