3k2l Citations

Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition.

Abstract

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.

Reviews - 3k2l mentioned but not cited (2)

  1. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Lindberg MF, Meijer L. Int J Mol Sci 22 6047 (2021)
  2. Emerging roles of DYRK2 in cancer. Tandon V, de la Vega L, Banerjee S. J Biol Chem 296 100233 (2021)

Articles - 3k2l mentioned but not cited (10)

  1. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, Gerber SA, Eswaran J, Knapp S, Elkins JM. Structure 21 986-996 (2013)
  2. Novel Inverse Binding Mode of Indirubin Derivatives Yields Improved Selectivity for DYRK Kinases. Myrianthopoulos V, Kritsanida M, Gaboriaud-Kolar N, Magiatis P, Ferandin Y, Durieu E, Lozach O, Cappel D, Soundararajan M, Filippakopoulos P, Sherman W, Knapp S, Meijer L, Mikros E, Skaltsounis AL. ACS Med Chem Lett 4 22-26 (2013)
  3. Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. Gao Q, Mechin I, Kothari N, Guo Z, Deng G, Haas K, McManus J, Hoffmann D, Wang A, Wiederschain D, Rocnik J, Czechtizky W, Chen X, McLean L, Arlt H, Harper D, Liu F, Majid T, Patel V, Lengauer C, Garcia-Echeverria C, Zhang B, Cheng H, Dorsch M, Huang SA. J Biol Chem 288 30125-30138 (2013)
  4. Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes. Mehnert M, Ciuffa R, Frommelt F, Uliana F, van Drogen A, Ruminski K, Gstaiger M, Aebersold R. Nat Commun 11 3563 (2020)
  5. Identification of suppressors of mbk-2/DYRK by whole-genome sequencing. Wang Y, Wang JT, Rasoloson D, Stitzel ML, O' Connell KF, Smith HE, Seydoux G. G3 (Bethesda) 4 231-241 (2014)
  6. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. J Biol Chem 294 13545-13559 (2019)
  7. Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation. Kaltheuner IH, Anand K, Moecking J, Düster R, Wang J, Gray NS, Geyer M. Nat Commun 12 6607 (2021)
  8. Selective inhibition reveals the regulatory function of DYRK2 in protein synthesis and calcium entry. Wei T, Wang J, Liang R, Chen W, Chen Y, Ma M, He A, Du Y, Zhou W, Zhang Z, Zeng X, Wang C, Lu J, Guo X, Chen XW, Wang Y, Tian R, Xiao J, Lei X. Elife 11 e77696 (2022)
  9. Druggable exosites of the human kino-pocketome. Nicola G, Kufareva I, Ilatovskiy AV, Abagyan R. J Comput Aided Mol Des 34 219-230 (2020)
  10. Murine isoforms of UDP-GlcNAc 2-epimerase/ManNAc kinase: Secondary structures, expression profiles, and response to ManNAc therapy. Yardeni T, Jacobs K, Niethamer TK, Ciccone C, Anikster Y, Kurochkina N, Gahl WA, Huizing M. Glycoconj J 30 609-618 (2013)


Reviews citing this publication (17)

  1. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Duchon A, Herault Y. Front Behav Neurosci 10 104 (2016)
  2. Therapeutic strategies targeting FOXO transcription factors. Calissi G, Lam EW, Link W. Nat Rev Drug Discov 20 21-38 (2021)
  3. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. Cancers (Basel) 12 E2106 (2020)
  4. Case report of novel DYRK1A mutations in 2 individuals with syndromic intellectual disability and a review of the literature. Luco SM, Pohl D, Sell E, Wagner JD, Dyment DA, Daoud H. BMC Med Genet 17 15 (2016)
  5. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Laham AJ, Saber-Ayad M, El-Awady R. Cell Mol Life Sci 78 603-619 (2021)
  6. GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Demuro S, Di Martino RMC, Ortega JA, Cavalli A. Int J Mol Sci 22 9098 (2021)
  7. Structure and function of RET in multiple endocrine neoplasia type 2. Plaza-Menacho I. Endocr Relat Cancer 25 T79-T90 (2018)
  8. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Cell Mol Life Sci 77 4747-4763 (2020)
  9. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Atas-Ozcan H, Brault V, Duchon A, Herault Y. Genes (Basel) 12 1833 (2021)
  10. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. Singh R, Lauth M. J Dev Biol 5 E13 (2017)
  11. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. Yeung W, Ruan Z, Kannan N. IUBMB Life 72 1189-1202 (2020)
  12. The chromosome 21 kinase DYRK1A: emerging roles in cancer biology and potential as a therapeutic target. Rammohan M, Harris E, Bhansali RS, Zhao E, Li LS, Crispino JD. Oncogene 41 2003-2011 (2022)
  13. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Int J Mol Sci 22 9083 (2021)
  14. DYRK1A pathogenic variants in two patients with syndromic intellectual disability and a review of the literature. Meissner LE, Macnamara EF, D'Souza P, Yang J, Vezina G, Undiagnosed Diseases Network, Ferreira CR, Zein WM, Tifft CJ, Adams DR. Mol Genet Genomic Med 8 e1544 (2020)
  15. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Front Cell Dev Biol 11 1277537 (2023)
  16. New insights into the roles for DYRK family in mammalian development and congenital diseases. Yoshida S, Yoshida K. Genes Dis 10 758-770 (2023)
  17. Regulation of CMGC kinases by hypoxia. Kim K, Lee SB. BMB Rep 56 584-593 (2023)

Articles citing this publication (62)

  1. ELM-the eukaryotic linear motif resource in 2020. Kumar M, Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. Nucleic Acids Res 48 D296-D306 (2020)
  2. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. van Bon BW, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, Kleefstra T, Willemsen MH, Kumar R, Bosco P, Fichera M, Li D, Amaral D, Cristofoli F, Peeters H, Haan E, Romano C, Mefford HC, Scheffer I, Gecz J, de Vries BB, Eichler EE. Mol Psychiatry 21 126-132 (2016)
  3. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, Dixon JE. Nat Cell Biol 18 202-212 (2016)
  4. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Stamos JL, Chu ML, Enos MD, Shah N, Weis WI. Elife 3 e01998 (2014)
  5. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Kettenbach AN, Deng L, Wu Y, Baldissard S, Adamo ME, Gerber SA, Moseley JB. Mol Cell Proteomics 14 1275-1287 (2015)
  6. Unmasking determinants of specificity in the human kinome. Creixell P, Palmeri A, Miller CJ, Lou HJ, Santini CC, Nielsen M, Turk BE, Linding R. Cell 163 187-201 (2015)
  7. Mechanism of dual specificity kinase activity of DYRK1A. Walte A, Rüben K, Birner-Gruenberger R, Preisinger C, Bamberg-Lemper S, Hilz N, Bracher F, Becker W. FEBS J 280 4495-4511 (2013)
  8. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. Düster R, Kaltheuner IH, Schmitz M, Geyer M. J Biol Chem 296 100260 (2021)
  9. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones PG, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. J Med Chem 58 3131-3143 (2015)
  10. Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Hille S, Dierck F, Kühl C, Sosna J, Adam-Klages S, Adam D, Lüllmann-Rauch R, Frey N, Kuhn C. Cardiovasc Res 110 381-394 (2016)
  11. Selective inhibition of the kinase DYRK1A by targeting its folding process. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, Kato-Sumida T, Koike Y, Abe M, Nonaka Y, Ikura T, Ito N, Shibuya H, Hosoya T, Hagiwara M. Nat Commun 7 11391 (2016)
  12. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. J Med Chem 61 7687-7699 (2018)
  13. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Sci Signal 8 rs13 (2015)
  14. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. Howard CJ, Hanson-Smith V, Kennedy KJ, Miller CJ, Lou HJ, Johnson AD, Turk BE, Holt LJ. Elife 3 (2014)
  15. Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Schulz-Raffelt M, Chochois V, Auroy P, Cuiné S, Billon E, Dauvillée D, Li-Beisson Y, Peltier G. Biotechnol Biofuels 9 55 (2016)
  16. Comprehensive substrate specificity profiling of the human Nek kinome reveals unexpected signaling outputs. van de Kooij B, Creixell P, van Vlimmeren A, Joughin BA, Miller CJ, Haider N, Simpson CD, Linding R, Stambolic V, Turk BE, Yaffe MB. Elife 8 e44635 (2019)
  17. Identification of a DYRK1A-mediated phosphorylation site within the nuclear localization sequence of the hedgehog transcription factor GLI1. Ehe BK, Lamson DR, Tarpley M, Onyenwoke RU, Graves LM, Williams KP. Biochem Biophys Res Commun 491 767-772 (2017)
  18. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth ML, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. EMBO J 38 e99669 (2019)
  19. Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders. Evers JM, Laskowski RA, Bertolli M, Clayton-Smith J, Deshpande C, Eason J, Elmslie F, Flinter F, Gardiner C, Hurst JA, Kingston H, Kini U, Lampe AK, Lim D, Male A, Naik S, Parker MJ, Price S, Robert L, Sarkar A, Straub V, Woods G, Thornton JM, DDD Study, Wright CF. Hum Mol Genet 26 519-526 (2017)
  20. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Alexa A, Gógl G, Glatz G, Garai Á, Zeke A, Varga J, Dudás E, Jeszenői N, Bodor A, Hetényi C, Reményi A. Proc Natl Acad Sci U S A 112 2711-2716 (2015)
  21. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ. Sonamoto R, Kii I, Koike Y, Sumida Y, Kato-Sumida T, Okuno Y, Hosoya T, Hagiwara M. Sci Rep 5 12728 (2015)
  22. Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity. Hutterer C, Milbradt J, Hamilton S, Zaja M, Leban J, Henry C, Vitt D, Steingruber M, Sonntag E, Zeitträger I, Bahsi H, Stamminger T, Rawlinson W, Strobl S, Marschall M. Antiviral Res 143 113-121 (2017)
  23. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Kirsch K, Zeke A, Tőke O, Sok P, Sethi A, Sebő A, Kumar GS, Egri P, Póti ÁL, Gooley P, Peti W, Bento I, Alexa A, Reményi A. Nat Commun 11 5769 (2020)
  24. Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Recasens A, Humphrey SJ, Ellis M, Hoque M, Abbassi RH, Chen B, Longworth M, Needham EJ, James DE, Johns TG, Day BW, Kassiou M, Yang P, Munoz L. Cell Death Discov 7 81 (2021)
  25. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Neurobiol Dis 127 210-222 (2019)
  26. Functional characterization of DYRK1A missense variants associated with a syndromic form of intellectual deficiency and autism. Widowati EW, Ernst S, Hausmann R, Müller-Newen G, Becker W. Biol Open 7 bio032862 (2018)
  27. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Abu Jhaisha S, Widowati EW, Kii I, Sonamoto R, Knapp S, Papadopoulos C, Becker W. Sci Rep 7 6420 (2017)
  28. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Ashford AL, Dunkley TP, Cockerill M, Rowlinson RA, Baak LM, Gallo R, Balmanno K, Goodwin LM, Ward RA, Lochhead PA, Guichard S, Hudson K, Cook SJ. Cell Mol Life Sci 73 883-900 (2016)
  29. Synthesis and optimization of an original V-shaped collection of 4-7-disubstituted pyrido[3,2-d]pyrimidines as CDK5 and DYRK1A inhibitors. Dehbi O, Tikad A, Bourg S, Bonnet P, Lozach O, Meijer L, Aadil M, Akssira M, Guillaumet G, Routier S. Eur J Med Chem 80 352-363 (2014)
  30. Proline Hydroxylation Primes Protein Kinases for Autophosphorylation and Activation. Lee SB, Ko A, Oh YT, Shi P, D'Angelo F, Frangaj B, Koller A, Chen EI, Cardozo T, Iavarone A, Lasorella A. Mol Cell 79 376-389.e8 (2020)
  31. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus M, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. J Med Chem 63 2986-3003 (2020)
  32. The structure of a dual-specificity tyrosine phosphorylation-regulated kinase 1A-PKC412 complex reveals disulfide-bridge formation with the anomalous catalytic loop HRD(HCD) cysteine. Alexeeva M, Åberg E, Engh RA, Rothweiler U. Acta Crystallogr D Biol Crystallogr 71 1207-1215 (2015)
  33. Synthesis of new pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs as DYRK1A inhibitors. Bruel A, Bénéteau R, Chabanne M, Lozach O, Le Guevel R, Ravache M, Bénédetti H, Meijer L, Logé C, Robert JM. Bioorg Med Chem Lett 24 5037-5040 (2014)
  34. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. Cell Death Differ 29 105-117 (2022)
  35. Luciferin and derivatives as a DYRK selective scaffold for the design of protein kinase inhibitors. Rothweiler U, Eriksson J, Stensen W, Leeson F, Engh RA, Svendsen JS. Eur J Med Chem 94 140-148 (2015)
  36. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Cell Rep 34 108602 (2021)
  37. Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. Lee YH, Im E, Hyun M, Park J, Chung KC. J Biol Chem 296 100245 (2021)
  38. How to Separate Kinase Inhibition from Undesired Monoamine Oxidase A Inhibition-The Development of the DYRK1A Inhibitor AnnH75 from the Alkaloid Harmine. Wurzlbauer A, Rüben K, Gürdal E, Chaikuad A, Knapp S, Sippl W, Becker W, Bracher F. Molecules 25 E5962 (2020)
  39. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. Cell Death Dis 12 608 (2021)
  40. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG. J Cell Biol 211 653-668 (2015)
  41. Case Reports A De Novo Mutation in DYRK1A Causes Syndromic Intellectual Disability: A Chinese Case Report. Qiao F, Shao B, Wang C, Wang Y, Zhou R, Liu G, Meng L, Hu P, Xu Z. Front Genet 10 1194 (2019)
  42. MAP Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases. Sok P, Gógl G, Kumar GS, Alexa A, Singh N, Kirsch K, Sebő A, Drahos L, Gáspári Z, Peti W, Reményi A. Structure 28 1101-1113.e5 (2020)
  43. Mining Public Domain Data to Develop Selective DYRK1A Inhibitors. Henderson SH, Sorrell F, Bennett J, Hanley MT, Robinson S, Hopkins Navratilova I, Elkins JM, Ward SE. ACS Med Chem Lett 11 1620-1626 (2020)
  44. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme. Leal FD, da Silva Lima CH, de Alencastro RB, Castro HC, Rodrigues CR, Albuquerque MG. Int J Mol Sci 16 5235-5253 (2015)
  45. Novel and Potential Small Molecule Scaffolds as DYRK1A Inhibitors by Integrated Molecular Docking-Based Virtual Screening and Dynamics Simulation Study. Shahroz MM, Sharma HK, Altamimi ASA, Alamri MA, Ali A, Ali A, Alqahtani S, Altharawi A, Alabbas AB, Alossaimi MA, Riadi Y, Firoz A, Afzal O. Molecules 27 1159 (2022)
  46. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. Ramani MKV, Escobar EE, Irani S, Mayfield JE, Moreno RY, Butalewicz JP, Cotham VC, Wu H, Tadros M, Brodbelt JS, Zhang YJ. ACS Chem Biol 15 2259-2272 (2020)
  47. How to design potent and selective DYRK1B inhibitors? Molecular modeling study. Szamborska-Gbur A, Rutkowska E, Dreas A, Frid M, Vilenchik M, Milik M, Brzózka K, Król M. J Mol Model 25 41 (2019)
  48. Mutational analysis of two residues in the DYRK homology box of the protein kinase DYRK1A. Widowati EW, Bamberg-Lemper S, Becker W. BMC Res Notes 11 297 (2018)
  49. Tyr198 is the Essential Autophosphorylation Site for STK16 Localization and Kinase Activity. Wang J, Liu J, Ji X, Zhang X. Int J Mol Sci 20 E4852 (2019)
  50. A Bayesian semi-parametric model for thermal proteome profiling. Fang S, Kirk PDW, Bantscheff M, Lilley KS, Crook OM. Commun Biol 4 810 (2021)
  51. A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. Celtikci B. Adv Exp Med Biol 1275 357-382 (2021)
  52. ARN25068, a versatile starting point towards triple GSK-3β/FYN/DYRK1A inhibitors to tackle tau-related neurological disorders. Demuro S, Sauvey C, Tripathi SK, Di Martino RMC, Shi D, Ortega JA, Russo D, Balboni B, Giabbai B, Storici P, Girotto S, Abagyan R, Cavalli A. Eur J Med Chem 229 114054 (2022)
  53. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. Nat Commun 13 6133 (2022)
  54. Multi-step virtual screening to develop selective DYRK1A inhibitors. Koyama T, Yamaotsu N, Nakagome I, Ozawa SI, Yoshida T, Hayakawa D, Hayakawa D, Hirono S. J Mol Graph Model 72 229-239 (2017)
  55. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. Hiller NJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. ChemMedChem 13 1395-1404 (2018)
  56. Two adjacent phosphorylation sites in the C-terminus of the channel's α-subunit have opposing effects on epithelial sodium channel (ENaC) activity. Diakov A, Nesterov V, Dahlmann A, Korbmacher C. Pflugers Arch 474 681-697 (2022)
  57. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. Papenfuss M, Lützow S, Wilms G, Babendreyer A, Flaßhoff M, Kunick C, Becker W. Sci Rep 12 2393 (2022)
  58. Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras. Kamioka H, Yogosawa S, Oikawa T, Aizawa D, Ueda K, Saeki C, Haruki K, Shimoda M, Ikegami T, Nishikawa Y, Saruta M, Yoshida K. JHEP Rep 5 100759 (2023)
  59. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. J Cell Biol 221 e202102110 (2022)
  60. Case Reports Case report: A novel de novo deletion mutation of DYRK1A is associated with intellectual developmental disorder, autosomal dominant 7. Zhou C, Zhu H, Xiang Q, Mai J, Wang X, Wang J, Liu S. Front Neurosci 17 1174925 (2023)
  61. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. mBio e0218323 (2023)
  62. Identification of two novel and one rare mutation in DYRK1A and prenatal diagnoses in three Chinese families with intellectual Disability-7. Huang C, Luo H, Zeng B, Feng C, Chen J, Yuan H, Huang S, Yang B, Zou Y, Liu Y. Front Genet 14 1290949 (2023)