3fo5 Citations

Comparative structural analysis of lipid binding START domains.

OpenAccess logo PLoS One 6 e19521 (2011)
Related entries: 2pso, 2r55, 3p0l

Cited: 73 times
EuropePMC logo PMID: 21738568

Abstract

Background

Steroidogenic acute regulatory (StAR) protein related lipid transfer (START) domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.

Articles - 3fo5 mentioned but not cited (5)

  1. Comparative structural analysis of lipid binding START domains. Thorsell AG, Lee WH, Persson C, Siponen MI, Nilsson M, Busam RD, Kotenyova T, Schüler H, Lehtiö L. PLoS One 6 e19521 (2011)
  2. Molecular basis for sterol transport by StART-like lipid transfer domains. Horenkamp FA, Valverde DP, Nunnari J, Reinisch KM. EMBO J 37 e98002 (2018)
  3. Human brown fat inducible thioesterase variant 2 cellular localization and catalytic function. Chen D, Latham J, Zhao H, Bisoffi M, Farelli J, Dunaway-Mariano D. Biochemistry 51 6990-6999 (2012)
  4. Identifying Cancer-Relevant Mutations in the DLC START Domain Using Evolutionary and Structure-Function Analyses. Holub AS, Bouley RA, Petreaca RC, Husbands AY. Int J Mol Sci 21 E8175 (2020)
  5. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (17)

  1. Early steps in steroidogenesis: intracellular cholesterol trafficking. Miller WL, Bose HS. J Lipid Res 52 2111-2135 (2011)
  2. The mammalian START domain protein family in lipid transport in health and disease. Clark BJ. J Endocrinol 212 257-275 (2012)
  3. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Front Mol Neurosci 10 382 (2017)
  4. START ships lipids across interorganelle space. Alpy F, Tomasetto C. Biochimie 96 85-95 (2014)
  5. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Tillander V, Alexson SEH, Cohen DE. Trends Endocrinol Metab 28 473-484 (2017)
  6. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Hunt MC, Tillander V, Alexson SE. Biochimie 98 45-55 (2014)
  7. Insights into the mechanisms of sterol transport between organelles. Mesmin B, Antonny B, Drin G. Cell Mol Life Sci 70 3405-3421 (2013)
  8. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. Hanada K. J Lipid Res 59 1341-1366 (2018)
  9. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Hanada K. Biochim Biophys Acta 1841 704-719 (2014)
  10. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Midzak A, Papadopoulos V. Traffic 15 895-914 (2014)
  11. The binding site specificity of STARD4 subfamily: Breaking the cholesterol paradigm. Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. Mol Cell Endocrinol 408 53-61 (2015)
  12. Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death. Mishra SK, Gao YG, Zou X, Stephenson DJ, Malinina L, Hinchcliffe EH, Chalfant CE, Brown RE. Prog Lipid Res 78 101031 (2020)
  13. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Malinina L, Patel DJ, Brown RE. Annu Rev Biochem 86 609-636 (2017)
  14. The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism. Calderon-Dominguez M, Gil G, Medina MA, Pandak WM, Rodríguez-Agudo D. Int J Biochem Cell Biol 49 64-68 (2014)
  15. STARD5 specific ligand binding: comparison with STARD1 and STARD4 subfamilies. Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. Mol Cell Endocrinol 371 20-25 (2013)
  16. STAR splicing mutations cause the severe phenotype of lipoid congenital adrenal hyperplasia: insights from a novel splice mutation and review of reported cases. Camats N, Pandey AV, Fernández-Cancio M, Fernández JM, Ortega AM, Udhane S, Andaluz P, Audí L, Flück CE. Clin Endocrinol (Oxf) 80 191-199 (2014)
  17. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Biomolecules 13 224 (2023)

Articles citing this publication (51)

  1. Steroid hormone synthesis in mitochondria. Miller WL. Mol Cell Endocrinol 379 62-73 (2013)
  2. Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria. Watanabe Y, Tamura Y, Kawano S, Endo T. Nat Commun 6 7922 (2015)
  3. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Puig-Oliveras A, Revilla M, Castelló A, Fernández AI, Folch JM, Ballester M. Sci Rep 6 31803 (2016)
  4. Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity. Schrick K, Bruno M, Khosla A, Cox PN, Marlatt SA, Roque RA, Nguyen HC, He C, Snyder MP, Singh D, Yadav G. BMC Biol 12 70 (2014)
  5. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Tong J, Manik MK, Im YJ. Proc Natl Acad Sci U S A 115 E856-E865 (2018)
  6. StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion. Hanna S, Khalil B, Nasrallah A, Saykali BA, Sobh R, Nasser S, El-Sibai M. Int J Oncol 44 1499-1511 (2014)
  7. A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. Bockelmann S, Mina JGM, Korneev S, Hassan DG, Müller D, Hilderink A, Vlieg HC, Raijmakers R, Heck AJR, Haberkant P, Holthuis JCM. J Lipid Res 59 515-530 (2018)
  8. STARD4 Membrane Interactions and Sterol Binding. Iaea DB, Dikiy I, Kiburu I, Eliezer D, Maxfield FR. Biochemistry 54 4623-4636 (2015)
  9. Evolutionary origin of the mitochondrial cholesterol transport machinery reveals a universal mechanism of steroid hormone biosynthesis in animals. Fan J, Papadopoulos V. PLoS One 8 e76701 (2013)
  10. Effect of StarD13 on colorectal cancer proliferation, motility and invasion. Nasrallah A, Saykali B, Al Dimassi S, Khoury N, Hanna S, El-Sibai M. Oncol Rep 31 505-515 (2014)
  11. Identification of a Plasmodium falciparum phospholipid transfer protein. van Ooij C, Withers-Martinez C, Ringel A, Cockcroft S, Haldar K, Blackman MJ. J Biol Chem 288 31971-31983 (2013)
  12. Structural basis of sterol binding and transport by a yeast StARkin domain. Jentsch JA, Kiburu I, Pandey K, Timme M, Ramlall T, Levkau B, Wu J, Eliezer D, Boudker O, Menon AK. J Biol Chem 293 5522-5531 (2018)
  13. Functional characterization of thioesterase superfamily member 1/Acyl-CoA thioesterase 11: implications for metabolic regulation. Han S, Cohen DE. J Lipid Res 53 2620-2631 (2012)
  14. Structure of the lutein-binding domain of human StARD3 at 1.74 Å resolution and model of a complex with lutein. Horvath MP, George EW, Tran QT, Baumgardner K, Zharov G, Lee S, Sharifzadeh H, Shihab S, Mattinson T, Li B, Bernstein PS. Acta Crystallogr F Struct Biol Commun 72 609-618 (2016)
  15. New players on the metabolic stage: How do you like Them Acots? Cohen DE. Adipocyte 2 3-6 (2013)
  16. Structure-guided functional characterization of enediyne self-sacrifice resistance proteins, CalU16 and CalU19. Elshahawi SI, Ramelot TA, Seetharaman J, Chen J, Singh S, Yang Y, Pederson K, Kharel MK, Xiao R, Lew S, Yennamalli RM, Miller MD, Wang F, Tong L, Montelione GT, Kennedy MA, Bingman CA, Zhu H, Phillips GN, Thorson JS. ACS Chem Biol 9 2347-2358 (2014)
  17. The Lipid Transfer Protein StarD7: Structure, Function, and Regulation. Flores-Martin J, Rena V, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S. Int J Mol Sci 14 6170-6186 (2013)
  18. Regulation and Essentiality of the StAR-related Lipid Transfer (START) Domain-containing Phospholipid Transfer Protein PFA0210c in Malaria Parasites. Hill RJ, Ringel A, Knuepfer E, Moon RW, Blackman MJ, van Ooij C. J Biol Chem 291 24280-24292 (2016)
  19. ER stress increases StarD5 expression by stabilizing its mRNA and leads to relocalization of its protein from the nucleus to the membranes. Rodriguez-Agudo D, Calderon-Dominguez M, Medina MA, Ren S, Gil G, Pandak WM. J Lipid Res 53 2708-2715 (2012)
  20. StAR-related lipid transfer domain protein 5 binds primary bile acids. Létourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG. J Lipid Res 53 2677-2689 (2012)
  21. Structural basis for regulation of the human acetyl-CoA thioesterase 12 and interactions with the steroidogenic acute regulatory protein-related lipid transfer (START) domain. Swarbrick CM, Roman N, Cowieson N, Patterson EI, Nanson J, Siponen MI, Berglund H, Lehtiö L, Forwood JK. J Biol Chem 289 24263-24274 (2014)
  22. Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Al Haddad M, El-Rif R, Hanna S, Jaafar L, Dennaoui R, Abdellatef S, Miskolci V, Cox D, Hodgson L, El-Sibai M. Cell Commun Signal 18 144 (2020)
  23. Identification of novel CERT ligands as potential ceramide trafficking inhibitors. Santos C, Rogriguez F, Garcia V, Moravčíková D, Berkeš D, Daïch A, Levade T, Baudoin-Dehoux C, Ballereau S, Génisson Y. Chembiochem 15 2522-2528 (2014)
  24. Overexpression and proliferation dependence of acyl-CoA thioesterase 11 and 13 in lung adenocarcinoma. Hung JY, Chiang SR, Liu KT, Tsai MJ, Huang MS, Shieh JM, Yen MC, Hsu YL. Oncol Lett 14 3647-3656 (2017)
  25. miR-182-5p Serves as an Oncogene in Lung Adenocarcinoma through Binding to STARD13. Wu X, Wang W, Wu G, Peng C, Liu J. Comput Math Methods Med 2021 7074343 (2021)
  26. Identification of small-molecule inhibitors of the steroidogenic acute regulatory protein (STARD1) by structure-based design. Akula N, Midzak A, Lecanu L, Papadopoulos V. Bioorg Med Chem Lett 22 4139-4143 (2012)
  27. The CERT antagonist HPA-12: first practical synthesis and individual binding evaluation of the four stereoisomers. Santos C, Fleury L, Rodriguez F, Markus J, Berkeš D, Daïch A, Ausseil F, Baudoin-Dehoux C, Ballereau S, Génisson Y. Bioorg Med Chem 23 2004-2009 (2015)
  28. Thirty-Eight-Year Follow-Up of Two Sibling Lipoid Congenital Adrenal Hyperplasia Patients Due to Homozygous Steroidogenic Acute Regulatory (STARD1) Protein Mutation. Molecular Structure and Modeling of the STARD1 L275P Mutation. Khoury K, Barbar E, Ainmelk Y, Ouellet A, Lavigne P, LeHoux JG. Front Neurosci 10 527 (2016)
  29. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin. Sevillano CA, Ten Napel J, Guimarães SEF, Silva FF, Calus MPL. BMC Genomics 19 740 (2018)
  30. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism. Létourneau D, Bédard M, Cabana J, Lefebvre A, LeHoux JG, Lavigne P. Sci Rep 6 28486 (2016)
  31. Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in Mycobacterium tuberculosis. Melly GC, Stokas H, Dunaj JL, Hsu FF, Rajavel M, Su CC, Yu EW, Purdy GE. J Biol Chem 294 15711-15723 (2019)
  32. Allosteric regulation of thioesterase superfamily member 1 by lipid sensor domain binding fatty acids and lysophosphatidylcholine. Tillman MC, Imai N, Li Y, Khadka M, Okafor CD, Juneja P, Adhiyaman A, Hagen SJ, Cohen DE, Ortlund EA. Proc Natl Acad Sci U S A 117 22080-22089 (2020)
  33. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5. Létourneau D, Lorin A, Lefebvre A, Cabana J, Lavigne P, LeHoux JG. Biochim Biophys Acta 1831 1589-1599 (2013)
  34. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Sci Rep 7 16057 (2017)
  35. Research Support, Non-U.S. Gov't Interorganelle trafficking of lipids: preface for the thematic review series. Hanada K, Voelker D. Traffic 15 889-894 (2014)
  36. Letter Structural and genetic analysis of START superfamily protein MSMEG_0129 from Mycobacterium smegmatis. Zheng S, Zhou Y, Fleming J, Zhou Y, Zhang M, Li S, Li H, Sun B, Liu W, Bi L. FEBS Lett 592 1445-1457 (2018)
  37. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. Mukherjee T, Subedi B, Khosla A, Begler EM, Stephens PM, Warner AL, Lerma-Reyes R, Thompson KA, Gunewardena S, Schrick K. Plant Physiol 190 2315-2334 (2022)
  38. The tumor suppressor activity of DLC1 requires the interaction of its START domain with Phosphatidylserine, PLCD1, and Caveolin-1. Sanchez-Solana B, Wang D, Qian X, Velayoudame P, Simanshu DK, Acharya JK, Lowy DR. Mol Cancer 20 141 (2021)
  39. Identification of novel mutations in STAR gene in patients with lipoid congenital adrenal hyperplasia: a first report from India. Vasudevan L, Joshi R, Das DK, Rao S, Sanghavi D, Babu S, Tamhankar PM. J Clin Res Pediatr Endocrinol 5 121-124 (2013)
  40. Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. Kovalchuk N, Wu W, Bazanova N, Reid N, Singh R, Shirley N, Eini O, Johnson AAT, Langridge P, Hrmova M, Lopato S. Plant Mol Biol 101 41-61 (2019)
  41. (1)H, (13)C, and (15)N backbone chemical shift assignments of StAR-related lipid transfer domain protein 5 (STARD5). Lorin A, Létourneau D, Lefebvre A, LeHoux JG, Lavigne P. Biomol NMR Assign 7 21-24 (2013)
  42. Characterization of Two Novel Variants of the Steroidogenic Acute Regulatory Protein Identified in a Girl with Classic Lipoid Congenital Adrenal Hyperplasia. Katharopoulos E, Di Iorgi N, Fernandez-Alvarez P, Pandey AV, Groessl M, Dubey S, Camats N, Napoli F, Patti G, Lezzi M, Maghnie M, Flück CE. Int J Mol Sci 21 E6185 (2020)
  43. Shuttle mission in the mitochondrial intermembrane space. Endo T, Tamura Y. EMBO J 37 e98993 (2018)
  44. Solution structure of human steroidogenic acute regulatory protein STARD1 studied by small-angle X-ray scattering. Sluchanko NN, Tugaeva KV, Maksimov EG. Biochem Biophys Res Commun 489 445-450 (2017)
  45. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. Elife 11 e82343 (2022)
  46. Clinical and functional analyses of the novel STAR c.558C>A in a patient with classic lipoid congenital adrenal hyperplasia. Liu J, Dai HM, Guang GP, Hu WM, Jin P. Front Genet 14 1096454 (2023)
  47. Molecular activities and ligand-binding specificities of StAR-related lipid transfer domains: exploring integrated in silico methods and ensemble-docking approaches. Kumar KK, Devi BU, Neeraja P. SAR QSAR Environ Res 29 483-501 (2018)
  48. ¹H, ¹³C, and ¹⁵N backbone resonance assignments of the L124D mutant of StAR-related lipid transfer domain protein 4 (StARD4). Dikiy I, Ramlall TF, Eliezer D. Biomol NMR Assign 7 245-248 (2013)
  49. Allosterically coupled conformational dynamics in solution prepare the sterol transfer protein StarD4 to release its cargo upon interaction with target membranes. Xie H, Weinstein H. Front Mol Biosci 10 1197154 (2023)
  50. Cavity architecture based modulation of ligand binding tunnels in plant START domains. Mahtha SK, Kumari K, Gaur V, Yadav G. Comput Struct Biotechnol J 21 3946-3963 (2023)
  51. STARD12/14 are diagnostic and prognostic biomarkers of lung adenocarcinoma associated with epigenetic regulation, immune infiltration and ferroptosis. Zhang WD, Hu DM, Shi ZE, Wang QX, Zhang MY, Liu JY, Ji XL, Qu YQ. Int J Med Sci 20 1427-1447 (2023)