3uvj Citations

Crystal structures of the catalytic domain of human soluble guanylate cyclase.

PLoS One 8 e57644 (2013)
Cited: 60 times
EuropePMC logo PMID: 23505436

Abstract

Soluble guanylate cyclase (sGC) catalyses the synthesis of cyclic GMP in response to nitric oxide. The enzyme is a heterodimer of homologous α and β subunits, each of which is composed of multiple domains. We present here crystal structures of a heterodimer of the catalytic domains of the α and β subunits, as well as an inactive homodimer of β subunits. This first structure of a metazoan, heteromeric cyclase provides several observations. First, the structures resemble known structures of adenylate cyclases and other guanylate cyclases in overall fold and in the arrangement of conserved active-site residues, which are contributed by both subunits at the interface. Second, the subunit interaction surface is promiscuous, allowing both homodimeric and heteromeric association; the preference of the full-length enzyme for heterodimer formation must derive from the combined contribution of other interaction interfaces. Third, the heterodimeric structure is in an inactive conformation, but can be superposed onto an active conformation of adenylate cyclase by a structural transition involving a 26° rigid-body rotation of the α subunit. In the modelled active conformation, most active site residues in the subunit interface are precisely aligned with those of adenylate cyclase. Finally, the modelled active conformation also reveals a cavity related to the active site by pseudo-symmetry. The pseudosymmetric site lacks key active site residues, but may bind allosteric regulators in a manner analogous to the binding of forskolin to adenylate cyclase. This indicates the possibility of developing a new class of small-molecule modulators of guanylate cyclase activity targeting the catalytic domain.

Reviews - 3uvj mentioned but not cited (5)

  1. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. Pharmacol Rev 69 93-139 (2017)
  2. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Montfort WR, Wales JA, Weichsel A. Antioxid Redox Signal 26 107-121 (2017)
  3. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Koch KW, Dell'Orco D. Front Mol Neurosci 8 67 (2015)
  4. Structure/function of the soluble guanylyl cyclase catalytic domain. Childers KC, Garcin ED. Nitric Oxide 77 53-64 (2018)
  5. Structures of soluble guanylate cyclase: implications for regulatory mechanisms and drug development. Gileadi O. Biochem Soc Trans 42 108-113 (2014)

Articles - 3uvj mentioned but not cited (16)

  1. Crystal structures of the catalytic domain of human soluble guanylate cyclase. Allerston CK, von Delft F, Gileadi O. PLoS One 8 e57644 (2013)
  2. Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase. Underbakke ES, Iavarone AT, Marletta MA. Proc Natl Acad Sci U S A 110 6777-6782 (2013)
  3. Nitric oxide-induced conformational changes in soluble guanylate cyclase. Underbakke ES, Iavarone AT, Chalmers MJ, Pascal BD, Novick S, Griffin PR, Marletta MA. Structure 22 602-611 (2014)
  4. Molecular model of a soluble guanylyl cyclase fragment determined by small-angle X-ray scattering and chemical cross-linking. Fritz BG, Roberts SA, Ahmed A, Breci L, Li W, Weichsel A, Brailey JL, Wysocki VH, Tama F, Montfort WR. Biochemistry 52 1568-1582 (2013)
  5. Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase. Campbell MG, Underbakke ES, Potter CS, Carragher B, Marletta MA. Proc Natl Acad Sci U S A 111 2960-2965 (2014)
  6. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. Horst BG, Yokom AL, Rosenberg DJ, Morris KL, Hammel M, Hurley JH, Marletta MA. Elife 8 e50634 (2019)
  7. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Seeger F, Quintyn R, Tanimoto A, Williams GJ, Tainer JA, Wysocki VH, Garcin ED. Biochemistry 53 2153-2165 (2014)
  8. Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation. Alapa M, Cui C, Shu P, Li H, Kholodovych V, Beuve A. Free Radic Biol Med 162 450-460 (2021)
  9. The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE. Sürmeli NB, Müskens FM, Marletta MA. J Biol Chem 290 15570-15580 (2015)
  10. Surface plasmon resonance using the catalytic domain of soluble guanylate cyclase allows the detection of enzyme activators. Mota F, Allerston CK, Hampden-Smith K, Garthwaite J, Selwood DL. Bioorg Med Chem Lett 24 1075-1079 (2014)
  11. A new small molecule inhibitor of soluble guanylate cyclase. Mota F, Gane P, Hampden-Smith K, Allerston CK, Garthwaite J, Selwood DL. Bioorg Med Chem 23 5303-5310 (2015)
  12. Letter Inhibition of soluble guanylyl cyclase by small molecules targeting the catalytic domain. Vijayaraghavan J, Kramp K, Harris ME, van den Akker F. FEBS Lett 590 3669-3680 (2016)
  13. Gene Expression Profiling Analysis Reveals Putative Phytochemotherapeutic Target for Castration-Resistant Prostate Cancer. Rotimi SO, Rotimi OA, Salako AA, Jibrin P, Oyelade J, Iweala EEJ. Front Oncol 9 714 (2019)
  14. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate. Ravichandran S, Duda T, Pertzev A, Sharma RK. Front Mol Neurosci 10 173 (2017)
  15. Molecular docking analysis of phytoconstituent from Momordica charantia with Guanylate Cyclase catalytic domain. Ghanta M, Panchanathan E, Lakkakula BVKS, Narayanaswamy A, Abhinand PA, Antony S. Bioinformation 14 378-383 (2018)
  16. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase. Khalid RR, Maryam A, Sezerman OU, Mylonas E, Siddiqi AR, Kokkinidis M. Sci Rep 10 9488 (2020)


Reviews citing this publication (17)

  1. The chemistry and biology of soluble guanylate cyclase stimulators and activators. Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, Schäfer M, Schirok H, Stasch JP, Stoll F, Straub A. Angew Chem Int Ed Engl 52 9442-9462 (2013)
  2. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Dasgupta A, Bowman L, D'Arsigny CL, Archer SL. Clin Pharmacol Ther 97 88-102 (2015)
  3. Physiological activation and deactivation of soluble guanylate cyclase. Horst BG, Marletta MA. Nitric Oxide 77 65-74 (2018)
  4. Redox regulation of soluble guanylyl cyclase. Shah RC, Sanker S, Wood KC, Durgin BG, Straub AC. Nitric Oxide 76 97-104 (2018)
  5. Comparison of moonlighting guanylate cyclases: roles in signal direction? Freihat L, Muleya V, Manallack DT, Wheeler JI, Irving HR. Biochem Soc Trans 42 1773-1779 (2014)
  6. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Sharma RK, Duda T. Front Mol Neurosci 7 56 (2014)
  7. Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. Stuehr DJ, Misra S, Dai Y, Ghosh A. J Biol Chem 296 100336 (2021)
  8. New insights into the role of soluble guanylate cyclase in blood pressure regulation. Buys E, Sips P. Curr Opin Nephrol Hypertens 23 135-142 (2014)
  9. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Front Physiol 5 134 (2014)
  10. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Sharma RK, Duda T, Makino CL. Front Mol Neurosci 9 83 (2016)
  11. Receptor Guanylyl Cyclases in Sensory Processing. Maruyama IN. Front Endocrinol (Lausanne) 7 173 (2016)
  12. Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation. Wittenborn EC, Marletta MA. Int J Mol Sci 22 5439 (2021)
  13. cGMP: transition from bench to bedside: a report of the 6th International Conference on cGMP Generators, Effectors and Therapeutic Implications. Hoffmann LS, Chen HH. Naunyn Schmiedebergs Arch Pharmacol 387 707-718 (2014)
  14. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. Cancers (Basel) 13 4142 (2021)
  15. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Circ J 79 463-469 (2015)
  16. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Jehle A, Garaschuk O. Int J Mol Sci 23 7048 (2022)
  17. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Duda T, Sharma RK. Front Mol Neurosci 15 1022771 (2022)

Articles citing this publication (22)

  1. Structural insights into the mechanism of human soluble guanylate cyclase. Kang Y, Liu R, Wu JX, Chen L. Nature 574 206-210 (2019)
  2. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Scheib U, Broser M, Constantin OM, Yang S, Gao S, Mukherjee S, Stehfest K, Nagel G, Gee CE, Hegemann P. Nat Commun 9 2046 (2018)
  3. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. Wheeler JI, Wong A, Marondedze C, Groen AJ, Kwezi L, Freihat L, Vyas J, Raji MA, Irving HR, Gehring C. Plant J 91 590-600 (2017)
  4. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase. Purohit R, Weichsel A, Montfort WR. Protein Sci 22 1439-1444 (2013)
  5. YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit. Purohit R, Fritz BG, The J, Issaian A, Weichsel A, David CL, Campbell E, Hausrath AC, Rassouli-Taylor L, Garcin ED, Gage MJ, Montfort WR. Biochemistry 53 101-114 (2014)
  6. Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC. Kumar RP, Morehouse BR, Fofana J, Trieu MM, Zhou DH, Lorenz MO, Oprian DD. J Biol Chem 292 21578-21589 (2017)
  7. Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo. Pan J, Yuan H, Zhang X, Zhang H, Xu Q, Zhou Y, Tan L, Nagawa S, Huang ZX, Tan X. Sci Rep 7 43112 (2017)
  8. Instability in a coiled-coil signaling helix is conserved for signal transduction in soluble guanylyl cyclase. Weichsel A, Kievenaar JA, Curry R, Croft JT, Montfort WR. Protein Sci 28 1830-1839 (2019)
  9. Differential impact of acute and prolonged cAMP agonist exposure on protein kinase A activation and human myometrium contractile activity. Lai PF, Tribe RM, Johnson MR. J Physiol 594 6369-6393 (2016)
  10. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Dent MR, DeMartino AW, Tejero J, Gladwin MT. Inorg Chem 60 15918-15940 (2021)
  11. Protein kinase A facilitates relaxation of mouse ileum via phosphorylation of neuronal nitric oxide synthase. Guerra DD, Bok R, Lorca RA, Hurt KJ. Br J Pharmacol 177 2765-2778 (2020)
  12. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. Düner M, Lambertz J, Mügge C, Hemschemeier A. Plant J 93 311-337 (2018)
  13. Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC. Butryn A, Raza H, Rada H, Moraes I, Owens RJ, Orville AM. FEBS J 287 2797-2807 (2020)
  14. Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1. Dove S, Danker KY, Stasch JP, Kaever V, Seifert R. Mol Pharmacol 85 598-607 (2014)
  15. Liver Proteome in Diabetes Type 1 Rat Model: Insulin-Dependent and -Independent Changes. Braga CP, Boone CH, Grove RA, Adamcova D, Fernandes AA, Adamec J, de Magalhães Padilha P. OMICS 20 711-726 (2016)
  16. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. Childers KC, Yao XQ, Giannakoulias S, Amason J, Hamelberg D, Garcin ED. J Biol Chem 294 18451-18464 (2019)
  17. Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase. Agulló L, Buch I, Gutiérrez-de-Terán H, Garcia-Dorado D, Villà-Freixa J. Proteins 84 1534-1548 (2016)
  18. Small alterations in cobinamide structure considerably influence sGC activation. Giedyk M, ó Proinsias K, Kurcoń S, Sharina I, Martin E, Gryko D. ChemMedChem 9 2344-2350 (2014)
  19. Cryo-EM density map fitting driven in-silico structure of human soluble guanylate cyclase (hsGC) reveals functional aspects of inter-domain cross talk upon NO binding. Khalid RR, Maryam A, Fadouloglou VE, Siddiqi AR, Zhang Y. J Mol Graph Model 90 109-119 (2019)
  20. Substrate specificity determinants of class III nucleotidyl cyclases. Bharambe NG, Barathy DV, Syed W, Visweswariah SS, Colaςo M, Misquith S, Suguna K. FEBS J 283 3723-3738 (2016)
  21. Mutational analysis gives insight into substrate preferences of a nucleotidyl cyclase from Mycobacterium avium. Syed W, Colaςo M, Misquith S. PLoS One 9 e109358 (2014)
  22. Anti-Inflammatory Activity of N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide Derivative via sGC-NO/Cytokine Pathway. da Silva PR, Apolinário NM, Silva SÂSD, Araruna MEC, Costa TB, E Silva YMSM, da Silva TG, de Moura RO, Dos Santos VL. Pharmaceuticals (Basel) 16 1415 (2023)