2x04 Citations

Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation.

Nat Struct Mol Biol 17 238-40 (2010)
Cited: 74 times
EuropePMC logo PMID: 20098421

Abstract

GW182-family proteins are essential for microRNA-mediated translational repression and deadenylation in animal cells. Here we show that a conserved motif in the human GW182 paralog TNRC6C interacts with the C-terminal domain of polyadenylate binding protein 1 (PABC) and present the crystal structure of the complex. Mutations at the complex interface impair mRNA deadenylation in mammalian cell extracts, suggesting that the GW182-PABC interaction contributes to microRNA-mediated gene silencing.

Reviews - 2x04 mentioned but not cited (2)

  1. Molecular mechanisms of RNA interference. Wilson RC, Doudna JA. Annu Rev Biophys 42 217-239 (2013)
  2. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 259-274 (2021)

Articles - 2x04 mentioned but not cited (2)

  1. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA. Nat Struct Mol Biol 17 238-240 (2010)
  2. Hypothetical in silico model of the early-stage intermediate in protein folding. Kalinowska B, Alejster P, Sałapa K, Baster Z, Roterman I. J Mol Model 19 4259-4269 (2013)


Reviews citing this publication (25)

  1. Regulation of mRNA translation and stability by microRNAs. Fabian MR, Sonenberg N, Filipowicz W. Annu Rev Biochem 79 351-379 (2010)
  2. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Huntzinger E, Izaurralde E. Nat Rev Genet 12 99-110 (2011)
  3. Towards a molecular understanding of microRNA-mediated gene silencing. Jonas S, Izaurralde E. Nat Rev Genet 16 421-433 (2015)
  4. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Fabian MR, Sonenberg N. Nat Struct Mol Biol 19 586-593 (2012)
  5. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Iwakawa HO, Tomari Y. Trends Cell Biol 25 651-665 (2015)
  6. Posttranscriptional upregulation by microRNAs. Vasudevan S. Wiley Interdiscip Rev RNA 3 311-330 (2012)
  7. The complexity of miRNA-mediated repression. Wilczynska A, Bushell M. Cell Death Differ 22 22-33 (2015)
  8. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Ipsaro JJ, Joshua-Tor L. Nat Struct Mol Biol 22 20-28 (2015)
  9. Structural Foundations of RNA Silencing by Argonaute. Sheu-Gruttadauria J, MacRae IJ. J Mol Biol 429 2619-2639 (2017)
  10. The panorama of miRNA-mediated mechanisms in mammalian cells. Stroynowska-Czerwinska A, Fiszer A, Krzyzosiak WJ. Cell Mol Life Sci 71 2253-2270 (2014)
  11. Poly(A) binding proteins: are they all created equal? Goss DJ, Kleiman FE. Wiley Interdiscip Rev RNA 4 167-179 (2013)
  12. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Duchaine TF, Fabian MR. Cold Spring Harb Perspect Biol 11 a032771 (2019)
  13. To polyadenylate or to deadenylate: that is the question. Zhang X, Virtanen A, Kleiman FE. Cell Cycle 9 4437-4449 (2010)
  14. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Temme C, Simonelig M, Wahle E. Front Genet 5 143 (2014)
  15. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Tritschler F, Huntzinger E, Izaurralde E. Nat Rev Mol Cell Biol 11 379-384 (2010)
  16. MicroRNA pathways in neural development and plasticity. Vo NK, Cambronne XA, Goodman RH. Curr Opin Neurobiol 20 457-465 (2010)
  17. Argonaute proteins: Structural features, functions and emerging roles. Wu J, Yang J, Cho WC, Zheng Y. J Adv Res 24 317-324 (2020)
  18. The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. Xie J, Kozlov G, Gehring K. Biochim Biophys Acta 1839 1062-1068 (2014)
  19. A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Braun JE, Huntzinger E, Izaurralde E. Cold Spring Harb Perspect Biol 4 a012328 (2012)
  20. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Brook M, Gray NK. Biochem Soc Trans 40 856-864 (2012)
  21. Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Ortiz-Quintero B. Cancers (Basel) 12 E3455 (2020)
  22. Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology. Costa MC, Leitão AL, Enguita FJ. Int J Mol Sci 13 10268-10295 (2012)
  23. Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Fukao A, Tomohiro T, Fujiwara T. Cells 10 1711 (2021)
  24. Posttranscriptional and Translational Control of Gene Regulation in CD4+ T Cell Subsets. Istomine R, Pavey N, Piccirillo CA. J Immunol 196 533-540 (2016)
  25. When Argonaute takes out the ribonuclease sword. Nakanishi K. J Biol Chem 300 105499 (2024)

Articles citing this publication (45)

  1. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Braun JE, Huntzinger E, Fauser M, Izaurralde E. Mol Cell 44 120-133 (2011)
  2. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. Nat Struct Mol Biol 18 1218-1226 (2011)
  3. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, Sonenberg N. Nat Struct Mol Biol 18 1211-1217 (2011)
  4. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, Blackshear PJ, Nagar B, Sonenberg N. Nat Struct Mol Biol 20 735-739 (2013)
  5. Phase Transitions in the Assembly and Function of Human miRISC. Sheu-Gruttadauria J, MacRae IJ. Cell 173 946-957.e16 (2018)
  6. Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E. RNA 16 1356-1370 (2010)
  7. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. Nishi K, Nishi A, Nagasawa T, Ui-Tei K. RNA 19 17-35 (2013)
  8. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Fukao A, Mishima Y, Takizawa N, Oka S, Imataka H, Pelletier J, Sonenberg N, Thoma C, Fujiwara T. Mol Cell 56 79-89 (2014)
  9. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. RNA 20 1398-1409 (2014)
  10. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. Zekri L, Kuzuoğlu-Öztürk D, Izaurralde E. EMBO J 32 1052-1065 (2013)
  11. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Huntzinger E, Kuzuoglu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. Nucleic Acids Res 41 978-994 (2013)
  12. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW. Nat Struct Mol Biol 19 603-608 (2012)
  13. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Huntzinger E, Braun JE, Heimstädt S, Zekri L, Izaurralde E. EMBO J 29 4146-4160 (2010)
  14. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Christie M, Boland A, Huntzinger E, Weichenrieder O, Izaurralde E. Mol Cell 51 360-373 (2013)
  15. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Mishima Y, Fukao A, Kishimoto T, Sakamoto H, Fujiwara T, Inoue K. Proc Natl Acad Sci U S A 109 1104-1109 (2012)
  16. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. Elife 4 (2015)
  17. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. Fukaya T, Tomari Y. EMBO J 30 4998-5009 (2011)
  18. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Kirby MK, Ramaker RC, Gertz J, Davis NS, Johnston BE, Oliver PG, Sexton KC, Greeno EW, Christein JD, Heslin MJ, Posey JA, Grizzle WE, Vickers SM, Buchsbaum DJ, Cooper SJ, Myers RM. Mol Oncol 10 1169-1182 (2016)
  19. miRNA repression of translation in vitro takes place during 43S ribosomal scanning. Ricci EP, Limousin T, Soto-Rifo R, Rubilar PS, Decimo D, Ohlmann T. Nucleic Acids Res 41 586-598 (2013)
  20. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Su H, Meng S, Lu Y, Trombly MI, Chen J, Lin C, Turk A, Wang X. Mol Cell 43 97-109 (2011)
  21. Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N. PLoS Biol 11 e1001564 (2013)
  22. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E. Nucleic Acids Res 40 5651-5665 (2012)
  23. Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Peterson CW, Haworth KG, Burke BP, Polacino P, Norman KK, Adair JE, Hu SL, Bartlett JS, Symonds GP, Kiem HP. Mol Ther Methods Clin Dev 3 16007 (2016)
  24. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Cambronne XA, Shen R, Auer PL, Goodman RH. Proc Natl Acad Sci U S A 109 20473-20478 (2012)
  25. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. Huang KL, Chadee AB, Chen CY, Zhang Y, Shyu AB. RNA 19 295-305 (2013)
  26. Divergent GW182 functional domains in the regulation of translational silencing. Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EK. Nucleic Acids Res 39 2534-2547 (2011)
  27. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Chekulaeva M, Parker R, Filipowicz W. Nucleic Acids Res 38 6673-6683 (2010)
  28. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nishi K, Takahashi T, Suzawa M, Miyakawa T, Nagasawa T, Ming Y, Tanokura M, Ui-Tei K. Nucleic Acids Res 43 9856-9873 (2015)
  29. A role for the poly(A)-binding protein Pab1p in PUF protein-mediated repression. Chritton JJ, Wickens M. J Biol Chem 286 33268-33278 (2011)
  30. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. J Biol Chem 290 22841-22850 (2015)
  31. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development. Newton FG, Harris RE, Sutcliffe C, Ashe HL. Development 142 3362-3373 (2015)
  32. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Mauri M, Kirchner M, Aharoni R, Ciolli Mattioli C, van den Bruck D, Gutkovitch N, Modepalli V, Selbach M, Moran Y, Chekulaeva M. Nucleic Acids Res 45 938-950 (2017)
  33. Developmental functions of piRNAs and transposable elements: a Drosophila point-of-view. Simonelig M. RNA Biol 8 754-759 (2011)
  34. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. Zielezinski A, Karlowski WM. RNA Biol 12 761-770 (2015)
  35. The isolated La-module of LARP1 mediates 3' poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. Mattijssen S, Kozlov G, Gaidamakov S, Ranjan A, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 275-289 (2021)
  36. Coordinated Regulation of Cap-Dependent Translation and MicroRNA Function by Convergent Signaling Pathways. Olejniczak SH, La Rocca G, Radler MR, Egan SM, Xiang Q, Garippa R, Thompson CB. Mol Cell Biol 36 2360-2373 (2016)
  37. HPat a decapping activator interacting with the miRNA effector complex. Barišić-Jäger E, Kręcioch I, Hosiner S, Antic S, Dorner S. PLoS One 8 e71860 (2013)
  38. The decapping activator HPat a novel factor co-purifying with GW182 from Drosophila cells. Jäger E, Dorner S. RNA Biol 7 381-385 (2010)
  39. PABP prevents the untimely decay of select mRNA populations in human cells. Kajjo S, Sharma S, Chen S, Brothers WR, Cott M, Hasaj B, Jovanovic P, Larsson O, Fabian MR. EMBO J 41 e108650 (2022)
  40. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. Chaston JJ, Stewart AG, Christie M. PLoS One 12 e0183587 (2017)
  41. Congress mRNA fate: Life and death of the mRNA in the cytoplasm. Denti MA, Viero G, Provenzani A, Quattrone A, Macchi P. RNA Biol 10 360-366 (2013)
  42. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif. Fan M, Zhang Y, Huang Z, Liu J, Guo X, Zhang H, Luo H. PLoS One 9 e108253 (2014)
  43. TNRC6C Functions as a Tumor Suppressor and Is Frequently Downregulated in Papillary Thyroid Cancer. Cai Z, Zhai T, Muhanhali D, Ling Y. Int J Endocrinol 2021 6686998 (2021)
  44. A MademoiseLLE domain binding platform links the key RNA transporter to endosomes. Devan SK, Schott-Verdugo S, Müntjes K, Bismar L, Reiners J, Hachani E, Schmitt L, Höppner A, Smits SH, Gohlke H, Feldbrügge M. PLoS Genet 18 e1010269 (2022)
  45. Anti-PABPC1 co-immunoprecipitation for examining the miRNAs directly targeting the 3'-UTR of EED mRNA. Hu Y, Yin KL, Ma X, Xia HF. PLoS One 9 e103695 (2014)