2qmj Citations

Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity.

J Mol Biol 375 782-92 (2008)
Cited: 152 times
EuropePMC logo PMID: 18036614

Abstract

Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.

Reviews - 2qmj mentioned but not cited (4)

  1. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Elferink H, Bruekers JPJ, Veeneman GH, Boltje TJ. Cell Mol Life Sci 77 4799-4826 (2020)
  2. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Kashtoh H, Baek KH. Plants (Basel) 11 2722 (2022)
  3. Unveiling Natural and Semisynthetic Acylated Flavonoids: Chemistry and Biological Actions in the Context of Molecular Docking. El-Kersh DM, Abou El-Ezz RF, Fouad M, Farag MA. Molecules 27 5501 (2022)
  4. Pharmacological Chaperone Therapy for Pompe Disease. Borie-Guichot M, Tran ML, Génisson Y, Ballereau S, Dehoux C. Molecules 26 7223 (2021)

Articles - 2qmj mentioned but not cited (60)

  1. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR. J Biol Chem 285 17763-17770 (2010)
  2. Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Caputo AT, Alonzi DS, Marti L, Reca IB, Kiappes JL, Struwe WB, Cross A, Basu S, Lowe ED, Darlot B, Santino A, Roversi P, Zitzmann N. Proc Natl Acad Sci U S A 113 E4630-8 (2016)
  3. Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A. J Biol Chem 288 19296-19303 (2013)
  4. Proteins with Evolutionarily Hypervariable Domains are Associated with Immune Response and Better Survival of Basal-like Breast Cancer Patients. Xu S, Feng Y, Zhao S. Comput Struct Biotechnol J 17 430-440 (2019)
  5. Suppressive Effects of Clerodendrum volubile P Beauv. [Labiatae] Methanolic Extract and Its Fractions on Type 2 Diabetes and Its Complications. Erukainure OL, Hafizur RM, Kabir N, Choudhary MI, Atolani O, Banerjee P, Preissner R, Chukwuma CI, Muhammad A, Muhammad A, Amonsou EO, Islam MS. Front Pharmacol 9 8 (2018)
  6. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Zhang Y, Wang N, Wang W, Wang J, Zhu Z, Li X. Peptides 76 45-50 (2016)
  7. Investigation on the Enzymatic Profile of Mulberry Alkaloids by Enzymatic Study and Molecular Docking. Liu Z, Yang Y, Dong W, Liu Q, Wang R, Pang J, Xia X, Zhu X, Liu S, Shen Z, Xiao Z, Liu Y. Molecules 24 E1776 (2019)
  8. Investigation of Anthocyanidins and Anthocyanins for Targeting α-Glucosidase in Diabetes Mellitus. Promyos N, Temviriyanukul P, Suttisansanee U. Prev Nutr Food Sci 25 263-271 (2020)
  9. Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Shao C, Feng Z, Westbrook JD, Peisach E, Berrisford J, Ikegawa Y, Kurisu G, Velankar S, Burley SK, Young JY. Glycobiology 31 1204-1218 (2021)
  10. α-Glucosidase Inhibitors from Vauquelinia corymbosa. Flores-Bocanegra L, Pérez-Vásquez A, Torres-Piedra M, Bye R, Linares E, Mata R. Molecules 20 15330-15342 (2015)
  11. Functional reconstruction of a eukaryotic-like E1/E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon. Hennell James R, Caceres EF, Escasinas A, Alhasan H, Howard JA, Deery MJ, Ettema TJG, Robinson NP. Nat Commun 8 1120 (2017)
  12. Enhancing glycan stability via site-selective fluorination: modulating substrate orientation by molecular design. Axer A, Jumde RP, Adam S, Faust A, Schäfers M, Fobker M, Koehnke J, Hirsch AKH, Gilmour R. Chem Sci 12 1286-1294 (2020)
  13. Identification of Cyclic Sulfonamides with an N-Arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling. Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Pharmaceuticals (Basel) 15 106 (2022)
  14. Synthesis and α-Glucosidase Inhibition Activity of 2-[3-(Benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl]-N-arylacetamides: An In Silico and Biochemical Approach. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Taj S, Hussain M, Sung Lee D, Zaki MEA. Molecules 26 3043 (2021)
  15. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents. Etsassala NGER, Badmus JA, Marnewick JL, Iwuoha EI, Nchu F, Hussein AA. Antioxidants (Basel) 9 E1149 (2020)
  16. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Gani RS, Kudva AK, Timanagouda K, Raghuveer, Mujawar SBH, Joshi SD, Raghu SV. Bioorg Chem 114 105046 (2021)
  17. Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness. Chandrasekaran S, Luna-Vital D, de Mejia EG. Nutrients 12 E3843 (2020)
  18. Aromatic Constituents from the Leaves of Actinidia arguta with Antioxidant and α-Glucosidase Inhibitory Activity. Ahn JH, Ryu SH, Lee S, Yeon SW, Turk A, Han YK, Lee KY, Hwang BY, Lee MK. Antioxidants (Basel) 10 1896 (2021)
  19. Computational and Pharmacological Evaluation of Ferrocene-Based Acyl Ureas and Homoleptic Cadmium Carboxylate Derivatives for Anti-diabetic Potential. Bano S, Khan AU, Asghar F, Usman M, Badshah A, Ali S. Front Pharmacol 8 1001 (2017)
  20. Exploring the therapeutic potential of benzothiazine-pyrazole hybrid molecules against alpha-glucosidase: Pharmacological and molecular modelling based approach. Taj S, Ahmad M, Alshammari A, Alghamdi A, Ali Ashfaq U. Saudi J Biol Sci 29 1416-1421 (2022)
  21. Investigation of effective natural inhibitors for starch hydrolysing enzymes from Simaroubaceae plants by molecular docking analysis and comparison with in-vitro studies. Mugaranja KP, Kulal A. Heliyon 8 e09360 (2022)
  22. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, Miyazaki T. J Biol Chem 298 101827 (2022)
  23. The effect of polyhydroxylated alkaloids on maltase-glucoamylase. Shang Q, Xiang J, Zhang H, Li Q, Tang Y. PLoS One 8 e70841 (2013)
  24. Development of a novel anti-hepatitis B virus agent via Sp1. Hayakawa M, Umeyama H, Iwadate M, Taguchi YH, Yano Y, Honda T, Itami-Matsumoto S, Kozuka R, Enomoto M, Tamori A, Kawada N, Murakami Y. Sci Rep 10 47 (2020)
  25. Discovery of Amide-Functionalized Benzimidazolium Salts as Potent α-Glucosidase Inhibitors. Khan IA, Ahmad M, Ashfaq UA, Sultan S, Zaki MEA. Molecules 26 4760 (2021)
  26. In silico analysis of a potential antidiabetic phytochemical erythrin against therapeutic targets of diabetes. Rao MMV, Hariprasad TPN. In Silico Pharmacol 9 5 (2021)
  27. Synthesis, spectral analysis, DFT calculations, biological potential and molecular docking studies of indole appended pyrazolo-triazine. Basavarajaiah SM, Nagesh GY, Javeed M, Bhat R, Nethravathi S, Basha JN, Reddy KR, Nisarga C, Srinivas P. Mol Divers 27 679-693 (2023)
  28. An evaluation of pharmacological healing potentialities of Terminalia Arjuna against several ailments on experimental rat models with an in-silico approach. Tahsin MR, Sultana A, Mohtasim Khan MS, Jahan I, Mim SR, Tithi TI, Ananta MF, Afrin S, Ali M, Hussain MS, Chowdhury JA, Kabir S, Chowdhury AA, Amran MS, Aktar F. Heliyon 7 e08225 (2021)
  29. Bioactivity-Guided Fractionation and Identification of Antidiabetic Compound of Syzygium polyanthum (Wight.)'s Leaf Extract in Streptozotocin-Induced Diabetic Rat Model. Widyawati T, Yusoff NA, Bello I, Asmawi MZ, Ahmad M. Molecules 27 6814 (2022)
  30. Designing of Thiazolidinones for COVID-19 and its Allied Diseases: An In silico Evaluation. Raza MA, Farwa U, Ain NQU, Ishaque F, Yaseen M, Naveed M, Shabbir MA. ChemistrySelect 7 e202201793 (2022)
  31. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AK, Ayoola AM, Timothy AA. J Taibah Univ Med Sci 18 337-347 (2023)
  32. Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of Syzygium cumini and Its Anti-Diabetic Potential. Rashid F, Javaid A, Mahmood-Ur-Rahman, Ashfaq UA, Sufyan M, Alshammari A, Alharbi M, Nisar MA, Khurshid M. Molecules 27 5734 (2022)
  33. Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Cardozo-Muñoz J, Cuca-Suárez LE, Prieto-Rodríguez JA, Lopez-Vallejo F, Patiño-Ladino OJ. Molecules 27 3283 (2022)
  34. Phenolics from Chrozophora oblongifolia Aerial Parts as Inhibitors of α-Glucosidases and Advanced Glycation End Products: In-Vitro Assessment, Molecular Docking and Dynamics Studies. Abdallah HM, Kashegari AT, Shalabi AA, Darwish KM, El-Halawany AM, Algandaby MM, Ibrahim SRM, Mohamed GA, Abdel-Naim AB, Koshak AE, Proksch P, Elhady SS. Biology (Basel) 11 762 (2022)
  35. Structural Insight into a Yeast Maltase-The BaAG2 from Blastobotrys adeninivorans with Transglycosylating Activity. Ernits K, Kjeldsen C, Persson K, Grigor E, Alamäe T, Visnapuu T. J Fungi (Basel) 7 816 (2021)
  36. Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations. Calzada F, Valdes M, Martínez-Solís J, Velázquez C, Barbosa E. Pharmaceuticals (Basel) 16 724 (2023)
  37. Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from Vernonia gratiosa Hance. Cong PV, Anh HLT, Vinh LB, Han YK, Trung NQ, Minh BQ, Duc NV, Ngoc TM, Hien NTT, Manh HD, Lien LT, Lee KY. J Microbiol Biotechnol 33 797-805 (2023)
  38. Analysis of Isoflavones in Pueraria by UHPLC-Q-Orbitrap HRMS and Study on α-Glucosidase Inhibitory Activity. Yang Y, Zhao H, Zhu F, Liu X, Liu Y, Zeng F, Liu B. Foods 11 3523 (2022)
  39. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Int J Mol Sci 24 12812 (2023)
  40. Antidiabetic Activity, Molecular Docking, and ADMET Properties of Compounds Isolated from Bioactive Ethyl Acetate Fraction of Ficus lutea Leaf Extract. Olaokun OO, Zubair MS. Molecules 28 7717 (2023)
  41. Antidiabetic and Cytotoxic Activities of Rotenoids and Isoflavonoids Isolated from Millettia pachycarpa Benth. Suthiphasilp V, Rujanapun N, Kumboonma P, Chaiyosang B, Tontapha S, Maneerat T, Patrick BO, Andersen RJ, Duangyod T, Charoensup R, Laphookhieo S. ACS Omega 7 24511-24521 (2022)
  42. Antioxidant Capacities and Enzymatic Inhibitory Effects of Different Solvent Fractions and Major Flavones from Celery Seeds Produced in Different Geographic Areas in China. Zhang C, Yu J, Tu Q, Yan F, Hu Z, Zhang Y, Song C. Antioxidants (Basel) 11 1542 (2022)
  43. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Front Pharmacol 14 1251856 (2023)
  44. Component Characterization, In Vitro Activities and Molecular Mechanism of Cydonia oblonga Mill. against Diabetic. Chi B, Liang X, Wang L, Bian Y, Zhang M, Tang Z, Wang D, Tian Z. Pharmaceuticals (Basel) 15 1566 (2022)
  45. Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. Kanwal Q, Ahmed M, Hamza M, Ahmad M, Atiq-Ur-Rehman, Yousaf N, Javaid A, Anwar A, Khan IH, Muddassar M. RSC Adv 13 22268-22280 (2023)
  46. Deciphering Molecular Aspects of Potential α-Glucosidase Inhibitors within Aspergillus terreus: A Computational Odyssey of Molecular Docking-Coupled Dynamics Simulations and Pharmacokinetic Profiling. Elhady SS, Alshobaki NM, Elfaky MA, Koshak AE, Alharbi M, Abdelhameed RFA, Darwish KM. Metabolites 13 942 (2023)
  47. Effect of Phenolics from Aeonium arboreum on Alpha Glucosidase, Pancreatic Lipase, and Oxidative Stress; a Bio-Guided Approach. Alfeqy MM, El-Hawary SS, El-Halawany AM, Rabeh MA, Alshehri SA, Serry AM, Fahmy HA, Ezzat MI. Pharmaceutics 15 2541 (2023)
  48. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Tomazi R, Figueira ÂC, Ferreira AM, Ferreira DQ, de Souza GC, de Souza Pinheiro WB, Pinheiro Neto JR, da Silva GA, de Lima HB, da Silva Hage-Melim LI, Pereira ACM, Carvalho JCT, da Silva de Almeida SSM. Pharmaceuticals (Basel) 14 856 (2021)
  49. Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates. Yang X, Wang D, Dai Y, Zhao L, Wang W, Ding X. Foods 12 663 (2023)
  50. Identification of novel α-glucosidase and ACE inhibitory peptides from Douchi using peptidomics approach and molecular docking. Guo W, Xiao Y, Fu X, Long Z, Wu Y, Lin Q, Ren K, Jiang L. Food Chem X 19 100779 (2023)
  51. In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Prieto-Rodríguez JA, Lévuok-Mena KP, Cardozo-Muñoz JC, Parra-Amin JE, Lopez-Vallejo F, Cuca-Suárez LE, Patiño-Ladino OJ. Plants (Basel) 11 2188 (2022)
  52. In Vivo and In Silico Assessment of Diabetes Ameliorating Potentiality and Safety Profile of Gynura procumbens Leaves. Tahsin MR, Tithi TI, Mim SR, Haque E, Sultana A, Bahar NB, Ahmed R, Chowdhury JA, Chowdhury AA, Kabir S, Aktar F, Uddin MS, Amran MS. Evid Based Complement Alternat Med 2022 9095504 (2022)
  53. Inhibition Kinetics and Theoretical Studies on Zanthoxylum chalybeum Engl. Dual Inhibitors of α-Glucosidase and α-Amylase. Kimani NM, Ochieng CO, Ogutu MD, Yamo KO, Onyango JO, Santos CBR. J Xenobiot 13 102-120 (2023)
  54. Molecular Docking and Molecular Dynamics Studies of Antidiabetic Phenolic Compound Isolated from Leaf Extract of Englerophytum magalismontanum (Sond.) T.D.Penn. Olaokun OO, Manonga SA, Zubair MS, Maulana S, Mkolo NM. Molecules 27 3175 (2022)
  55. Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis. Zhang Y, Wu F, He Z, Fang X, Liu X. Foods 12 393 (2023)
  56. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Molecules 29 233 (2023)
  57. Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Tsiaka T, Kritsi E, Bratakos SM, Sotiroudis G, Petridi P, Savva I, Christodoulou P, Strati IF, Zoumpoulakis P, Cavouras D, Sinanoglou VJ. Antioxidants (Basel) 12 1184 (2023)
  58. Salazinic Acid and Norlobaridone from the Lichen Hypotrachyna cirrhata: Antioxidant Activity, α-Glucosidase Inhibitory and Molecular Docking Studies. Kumar TK, Siva B, Kiranmai B, Alli VJ, Jadav SS, Reddy AM, Boustie J, Le Devehat F, Tiwari AK, Suresh Babu K. Molecules 28 7840 (2023)
  59. Screening and Activity Analysis of α-Glucosidase Inhibitory Peptides Derived from Coix Seed Prolamins Using Bioinformatics and Molecular Docking. Li Z, Zhang S, Meng W, Zhang J, Zhang D. Foods 12 3970 (2023)
  60. Synthesis of Novel N-Methylmorpholine-Substituted Benzimidazolium Salts as Potential α-Glucosidase Inhibitors. Khan IA, Saddique FA, Aslam S, Ashfaq UA, Ahmad M, Al-Hussain SA, Zaki MEA. Molecules 27 6012 (2022)


Reviews citing this publication (13)

  1. Possible effects of dietary polyphenols on sugar absorption and digestion. Williamson G. Mol Nutr Food Res 57 48-57 (2013)
  2. Role of polysaccharides in food, digestion, and health. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, Ellis PR, Shewry PR. Crit Rev Food Sci Nutr 57 237-253 (2017)
  3. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Martinez-Gonzalez AI, Díaz-Sánchez ÁG, Rosa LA, Vargas-Requena CL, Bustos-Jaimes I, Alvarez-Parrilla AE. Molecules 22 E669 (2017)
  4. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Okuyama M, Saburi W, Mori H, Kimura A. Cell Mol Life Sci 73 2727-2751 (2016)
  5. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Zhang G, Hasek LY, Lee BH, Hamaker BR. Food Funct 6 1072-1089 (2015)
  6. Structural aspects of therapeutic enzymes to treat metabolic disorders. Kang TS, Stevens RC. Hum Mutat 30 1591-1610 (2009)
  7. Structural Studies of the Intestinal α-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase. Rose DR, Chaudet MM, Jones K. J Pediatr Gastroenterol Nutr 66 Suppl 3 S11-S13 (2018)
  8. Cephalic phase insulin release: A review of its mechanistic basis and variability in humans. Pullicin AJ, Glendinning JI, Lim J. Physiol Behav 239 113514 (2021)
  9. Function and structure studies of GH family 31 and 97 α-glycosidases. Okuyama M. Biosci Biotechnol Biochem 75 2269-2277 (2011)
  10. Maltase Has Most Versatile α-Hydrolytic Activity Among the Mucosal α-Glucosidases of the Small Intestine. Lee BH, Hamaker BR. J Pediatr Gastroenterol Nutr 66 Suppl 3 S7-S10 (2018)
  11. Posttranslational Processing and Function of Mucosal Maltases. Amiri M, Naim HY. J Pediatr Gastroenterol Nutr 66 Suppl 3 S18-S23 (2018)
  12. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Molecules 28 3799 (2023)
  13. Maltooligosaccharides: Properties, Production and Applications. Bláhová M, Štefuca V, Hronská H, Rosenberg M. Molecules 28 3281 (2023)

Articles citing this publication (75)

  1. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Ren L, Qin X, Cao X, Wang L, Bai F, Bai G, Shen Y. Protein Cell 2 827-836 (2011)
  2. Structure of human lysosomal acid α-glucosidase-a guide for the treatment of Pompe disease. Roig-Zamboni V, Cobucci-Ponzano B, Iacono R, Ferrara MC, Germany S, Bourne Y, Parenti G, Moracci M, Sulzenbacher G. Nat Commun 8 1111 (2017)
  3. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Flanagan JJ, Rossi B, Tang K, Wu X, Mascioli K, Donaudy F, Tuzzi MR, Fontana F, Cubellis MV, Porto C, Benjamin E, Lockhart DJ, Valenzano KJ, Andria G, Parenti G, Do HV. Hum Mutat 30 1683-1692 (2009)
  4. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Williams LK, Zhang X, Caner S, Tysoe C, Nguyen NT, Wicki J, Williams DE, Coleman J, McNeill JH, Yuen V, Andersen RJ, Withers SG, Brayer GD. Nat Chem Biol 11 691-696 (2015)
  5. Stereocontrolled cyclic nitrone cycloaddition strategy for the synthesis of pyrrolizidine and indolizidine alkaloids. Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A. Chemistry 15 7808-7821 (2009)
  6. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH, Eskandari R, Jones K, Reddy KR, Quezada-Calvillo R, Nichols BL, Rose DR, Hamaker BR, Pinto BM. J Biol Chem 287 31929-31938 (2012)
  7. Novel α-glucosidase from human gut microbiome: substrate specificities and their switch. Tan K, Tesar C, Wilton R, Keigher L, Babnigg G, Joachimiak A. FASEB J 24 3939-3949 (2010)
  8. Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. Qin X, Ren L, Yang X, Bai F, Wang L, Geng P, Bai G, Shen Y. J Struct Biol 174 196-202 (2011)
  9. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR. PLoS One 8 e59745 (2013)
  10. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Arvindekar A, More T, Payghan PV, Laddha K, Ghoshal N, Arvindekar A. Food Funct 6 2693-2700 (2015)
  11. Starch source influences dietary glucose generation at the mucosal α-glucosidase level. Lin AH, Lee BH, Nichols BL, Quezada-Calvillo R, Rose DR, Naim HY, Hamaker BR. J Biol Chem 287 36917-36921 (2012)
  12. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H. J Biol Chem 287 43288-43299 (2012)
  13. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH, Nichols BL, Quezada-Calvillo R, Avery SE, Sim L, Rose DR, Naim HY, Hamaker BR. PLoS One 7 e35473 (2012)
  14. Candidate serum biomarkers for early intestinal cancer using 15N metabolic labeling and quantitative proteomics in the ApcMin/+ mouse. Ivancic MM, Huttlin EL, Chen X, Pleiman JK, Irving AA, Hegeman AD, Dove WF, Sussman MR. J Proteome Res 12 4152-4166 (2013)
  15. Total syntheses of casuarine and its 6-O-alpha-glucoside: complementary inhibition towards glycoside hydrolases of the GH31 and GH37 families. Cardona F, Parmeggiani C, Faggi E, Bonaccini C, Gratteri P, Sim L, Gloster TM, Roberts S, Davies GJ, Rose DR, Goti A. Chemistry 15 1627-1636 (2009)
  16. Casuarine-6-O-alpha-D-glucoside and its analogues are tight binding inhibitors of insect and bacterial trehalases. Cardona F, Goti A, Parmeggiani C, Parenti P, Forcella M, Fusi P, Cipolla L, Roberts SM, Davies GJ, Gloster TM. Chem Commun (Camb) 46 2629-2631 (2010)
  17. Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Satoh T, Toshimori T, Yan G, Yamaguchi T, Kato K. Sci Rep 6 20575 (2016)
  18. Docking and SAR studies of salacinol derivatives as alpha-glucosidase inhibitors. Nakamura S, Takahira K, Tanabe G, Morikawa T, Sakano M, Ninomiya K, Yoshikawa M, Muraoka O, Nakanishi I. Bioorg Med Chem Lett 20 4420-4423 (2010)
  19. Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase. Tan K, Tesar C, Wilton R, Jedrzejczak RP, Joachimiak A. Protein Sci 27 1498-1508 (2018)
  20. Structural modeling of mutant alpha-glucosidases resulting in a processing/transport defect in Pompe disease. Sugawara K, Saito S, Sekijima M, Ohno K, Tajima Y, Kroos MA, Reuser AJ, Sakuraba H. J Hum Genet 54 324-330 (2009)
  21. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH, Lin AH, Nichols BL, Jones K, Rose DR, Quezada-Calvillo R, Hamaker BR. Mol Nutr Food Res 58 1111-1121 (2014)
  22. Aromatic residue on β→α loop 1 in the catalytic domain is important to the transglycosylation specificity of glycoside hydrolase family 31 α-glucosidase. Song KM, Okuyama M, Nishimura M, Tagami T, Mori H, Kimura A. Biosci Biotechnol Biochem 77 1759-1765 (2013)
  23. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. Rozeboom HJ, Yu S, Madrid S, Kalk KH, Zhang R, Dijkstra BW. J Biol Chem 288 26764-26774 (2013)
  24. Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production. Gutiérrez-Alonso P, Gimeno-Pérez M, Ramírez-Escudero M, Plou FJ, Sanz-Aparicio J, Fernández-Lobato M. Appl Microbiol Biotechnol 100 3125-3135 (2016)
  25. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Lee YS, Huh JY, Nam SH, Moon SK, Lee SB. Food Chem 135 2253-2259 (2012)
  26. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642. Miyazaki T, Matsumoto Y, Matsuda K, Kurakata Y, Matsuo I, Ito Y, Nishikawa A, Tonozuka T. Glycoconj J 28 563-571 (2011)
  27. Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A. J Biol Chem 290 1796-1803 (2015)
  28. MYORG is associated with recessive primary familial brain calcification. Arkadir D, Lossos A, Rahat D, Abu Snineh M, Schueler-Furman O, Nitschke S, Minassian BA, Sadaka Y, Lerer I, Tabach Y, Meiner V. Ann Clin Transl Neurol 6 106-113 (2019)
  29. Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates. Tagami T, Okuyama M, Nakai H, Kim YM, Mori H, Taguchi K, Svensson B, Kimura A. Biochim Biophys Acta 1834 329-335 (2013)
  30. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, Tonozuka T. Biosci Biotechnol Biochem 80 1562-1567 (2016)
  31. An integrated strategy of ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and virtual screening for the identification of α-glucosidase inhibitors in acarviostatin-containing complex. Wanga L, Cui Q, Hou Y, Bai F, Sun J, Cao X, Liu P, Jiang M, Bai G. J Chromatogr A 1319 88-96 (2013)
  32. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells. Wongon M, Limpeanchob N. Heliyon 6 e03458 (2020)
  33. Peptide modulators of alpha-glucosidase. Roskar I, Molek P, Vodnik M, Stempelj M, Strukelj B, Lunder M. J Diabetes Investig 6 625-631 (2015)
  34. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase-glucoamylase and sucrase-isomaltase: synthesis and inhibitory properties of 3'- and 5'-maltose-extended de-O-sulfonated ponkoranol. Eskandari R, Jones K, Reddy KR, Jayakanthan K, Chaudet M, Rose DR, Pinto BM. Chemistry 17 14817-14825 (2011)
  35. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Front Microbiol 9 113 (2018)
  36. Systematic structure-activity study on potential chaperone lead compounds for acid α-glucosidase. Bruckmann C, Repo H, Kuokkanen E, Xhaard H, Heikinheimo P. ChemMedChem 7 1943-1953 (2012)
  37. Synthesis and characterization of novel, conjugated, fluorescent DNJ derivatives for α-glucosidase recognition. Hatano A, Kanno Y, Kondo Y, Sunaga Y, Umezawa H, Okada M, Yamada H, Iwaki R, Kato A, Fukui K. Bioorg Med Chem 25 773-778 (2017)
  38. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Eskandari R, Jones K, Rose DR, Pinto BM. Chem Commun (Camb) 47 9134-9136 (2011)
  39. 50 years of progress since congenital sucrase-isomaltase deficiency recognition. Nichols BL, Auricchio S. J Pediatr Gastroenterol Nutr 55 Suppl 2 S2-7 (2012)
  40. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation. Ma M, Okuyama M, Sato M, Tagami T, Klahan P, Kumagai Y, Mori H, Kimura A. Appl Microbiol Biotechnol 101 6399-6408 (2017)
  41. Enzymatic synthesis of Acarviosyl-maltooligosaccharides using disproportionating enzyme 1. Tagami T, Tanaka Y, Mori H, Okuyama M, Kimura A. Biosci Biotechnol Biochem 77 312-319 (2013)
  42. Inhibitory effects of epigallocatechin gallate and its glucoside on the human intestinal maltase inhibition. Nguyen TTH, Jung SH, Lee S, Ryu HJ, Kang HK, Moon YH, Kim YM, Kimura A, Kim D. Biotechnol Bioprocess Eng 17 966-971 (2012)
  43. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K. Protein Sci 25 2095-2101 (2016)
  44. Molecular docking and inhibition kinetics of α-glucosidase activity by labdane diterpenes isolated from tora seeds (Alpinia nigra B.L. Burtt.). Ghosh S, Rangan L. Appl Biochem Biotechnol 175 1477-1489 (2015)
  45. A Fast and Accurate Method to Identify and Quantify Enzymes in Brush-Border Membranes: In Situ Hydrolysis Followed by Nano LC-MS/MS. Brun A, Magallanes ME, Martínez Del Rio C, Barrett-Wilt GA, Karasov WH, Caviedes-Vidal E. Methods Protoc 3 E15 (2020)
  46. A novel metabolic pathway for glucose production mediated by α-glucosidase-catalyzed conversion of 1,5-anhydrofructose. Kim YM, Saburi W, Yu S, Nakai H, Maneesan J, Kang MS, Chiba S, Kim D, Okuyama M, Mori H, Kimura A. J Biol Chem 287 22441-22444 (2012)
  47. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH, Ao Z, Quezada-Calvillo R, Nichols BL, Lin CT, Hamaker BR. Carbohydr Polym 111 33-40 (2014)
  48. Development of a feasible assay for the detection of GAA mutations in patients with Pompe disease. Er TK, Chen CC, Chien YH, Liang WC, Kan TM, Jong YJ. Clin Chim Acta 429 18-25 (2014)
  49. Discovery of novel inhibitors for human intestinal maltase: virtual screening in a WISDOM environment and in vitro evaluation. Nguyen TT, Ryu HJ, Lee SH, Hwang S, Cha J, Breton V, Kim D. Biotechnol Lett 33 2185-2191 (2011)
  50. Probing the binding of Syzygium-derived α-glucosidase inhibitors with N- and C-terminal human maltase glucoamylase by docking and molecular dynamics simulation. Roy D, Kumar V, Acharya KK, Thirumurugan K. Appl Biochem Biotechnol 172 102-114 (2014)
  51. Synthesis and the intestinal glucosidase inhibitory activity of 2-aminoresorcinol derivatives toward an investigation of its binding site. Kato E, Oikawa K, Takahashi K, Kawabata J. Biosci Biotechnol Biochem 76 1044-1046 (2012)
  52. Targeting N-Terminal Human Maltase-Glucoamylase to Unravel Possible Inhibitors Using Molecular Docking, Molecular Dynamics Simulations, and Adaptive Steered Molecular Dynamics Simulations. Zhang S, Wang Y, Han L, Fu X, Wang S, Li W, Han W. Front Chem 9 711242 (2021)
  53. Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid alpha-glucosidase in Caenorhabditis elegans. Sikora J, Urinovská J, Majer F, Poupetová H, Hlavatá J, Kostrouchová M, Ledvinová J, Hrebícek M. Mol Cell Biochem 341 51-63 (2010)
  54. Characterization of Glycoside Hydrolase Families 13 and 31 Reveals Expansion and Diversification of α-Amylase Genes in the Phlebotomine Lutzomyia longipalpis and Modulation of Sandfly Glycosidase Activities by Leishmania Infection. da Costa-Latgé SG, Bates P, Dillon R, Genta FA. Front Physiol 12 635633 (2021)
  55. Inhibition of maltase-glucoamylase activity to hydrolyze α-1,4 linkages by the presence of undigested sucrose. Lee BH, Quezada-Calvillo R, Nichols BL, Rose DR, Hamaker BR. J Pediatr Gastroenterol Nutr 55 Suppl 2 S45-7 (2012)
  56. Investigations of the structures and inhibitory properties of intestinal maltase glucoamylase and sucrase isomaltase. Jones K, Eskandari R, Naim HY, Pinto BM, Rose DR. J Pediatr Gastroenterol Nutr 55 Suppl 2 S20-4 (2012)
  57. Phytochemical profile, enzyme inhibition activity and molecular docking analysis of Feijoa sellowiana O. Berg. Saber FR, Ashour RM, El-Halawany AM, Mahomoodally MF, Ak G, Zengin G, Mahrous EA. J Enzyme Inhib Med Chem 36 618-626 (2021)
  58. Substrate recognition of the catalytic α-subunit of glucosidase II from Schizosaccharomyces pombe. Okuyama M, Miyamoto M, Matsuo I, Iwamoto S, Serizawa R, Tanuma M, Ma M, Klahan P, Kumagai Y, Tagami T, Kimura A. Biosci Biotechnol Biochem 81 1503-1511 (2017)
  59. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron. Chaudet MM, Rose DR. Biochem Cell Biol 94 241-246 (2016)
  60. The nature of raw starch digestion. Ao Z, Quezada-Calvillo R, Nichols BL, Rose DR, Sterchi EE, Hamaker BR. J Pediatr Gastroenterol Nutr 55 Suppl 2 S42-3 (2012)
  61. A concise synthesis of N-substituted fagomine derivatives and the systematic exploration of their α-glycosidase inhibition. Jiang FX, Liu QZ, Zhao D, Luo CT, Guo CP, Ye WC, Luo C, Chen H. Eur J Med Chem 77 211-222 (2014)
  62. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Mugaranja KP, Kulal A. Heliyon 6 e04392 (2020)
  63. An apparent homozygous deletion in maltase-glucoamylase, a lesson in the evolution of SNP arrays. Eccleston JL, Koh C, Markello TC, Gahl WA, Heller T. Mol Genet Metab 107 674-678 (2012)
  64. Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken. Volf J, Rajova J, Babak V, Seidlerova Z, Rychlik I. Animals (Basel) 11 3155 (2021)
  65. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases. Chaudet MM, Rose DR. Biochem Cell Biol 94 323-330 (2016)
  66. The Sweet Taste of Acarbose and Maltotriose: Relative Detection and Underlying Mechanism. Pullicin AJ, Penner MH, Lim J. Chem Senses 44 123-128 (2019)
  67. Activity and post-prandial regulation of digestive enzyme activity along the Pacific hagfish (Eptatretus stoutii) alimentary canal. Weinrauch AM, Schaefer CM, Goss GG. PLoS One 14 e0215027 (2019)
  68. Antioxidant and Antidiabetic Activities, and UHPLC-ESI-QTOF-MS-Based Metabolite Profiling of an Endophytic Fungus Nigrospora sphaerica BRN 01 Isolated from Bauhinia purpurea L. Kantari SAK, Biswal RP, Kumar P, Dharanikota M, Agraharam A. Appl Biochem Biotechnol (2023)
  69. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes. Chegeni M, Amiri M, Nichols BL, Naim HY, Hamaker BR. FASEB J 32 3903-3911 (2018)
  70. Discovery of novel flavonoid derivatives as potential dual inhibitors against α-glucosidase and α-amylase: virtual screening, synthesis, and biological evaluation. Mai TT, Phan MH, Thai TT, Lam TP, Lai NV, Nguyen TT, Nguyen TV, Vo CT, Thai KM, Tran TD. Mol Divers (2023)
  71. Insight into broad substrate specificity and synergistic contribution of a fungal α-glucosidase in Chinese Nong-flavor daqu. Yi Z, Chen L, Jin Y, Shen Y, Liu N, Fang Y, Xiao Y, Wang X, Peng K, He K, Zhao H. Microb Cell Fact 22 114 (2023)
  72. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Lee BH, Hamaker BR. Carbohydr Polym 157 207-213 (2017)
  73. Structure-activity relationships of bergenin derivatives effect on α-glucosidase inhibition. Kashima Y, Yamaki H, Suzuki T, Miyazawa M. J Enzyme Inhib Med Chem 28 1162-1170 (2013)
  74. Theoretical Studies for the Discovery of Potential Sucrase-Isomaltase Inhibitors from Maize Silk Phytochemicals: An Approach to Treatment of Type 2 Diabetes. Landeros-Martínez LL, Campos-Almazán MI, Sánchez-Bojorge NA, Flores R, Palomares-Báez JP, Rodríguez-Valdez LM. Molecules 28 6778 (2023)
  75. Virtual Screening Technology for Two Novel Peptides in Soybean as Inhibitors of α-Amylase and α-Glucosidase. Tang X, Chen X, Wang H, Yang J, Li L, Zhu J, Liu Y. Foods 12 4387 (2023)