2qe0 Citations

The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis.

Abstract

Crystal structures of several members of the nonphosphorylating CoA-independent aldehyde dehydrogenase (ALDH) family have shown that the peculiar binding mode of the cofactor to the Rossmann fold results in a conformational flexibility for the nicotinamide moiety of the cofactor. This has been hypothesized to constitute an essential feature of the catalytic mechanism because the conformation of the cofactor required for the acylation step is not appropriate for the deacylation step. In the present study, the structure of a reaction intermediate of the E268A-glyceraldehyde 3-phosphate dehydrogenase (GAPN) from Streptococcus mutans, obtained by soaking the crystals of the enzyme/NADP complex with the natural substrate, is reported. The substrate is bound covalently in the four monomers and presents the geometric characteristics expected for a thioacylenzyme intermediate. Control experiments assessed that reduction of the coenzyme has occurred within the crystal. The structure reveals that reduction of the cofactor upon acylation leads to an extensive motion of the nicotinamide moiety with a flip of the reduced pyridinium ring away from the active site without significant changes of the protein structure. This event positions the reduced nicotinamide moiety in a pocket that likely constitutes the exit door for NADPH. Arguments are provided that the structure reported here constitutes a reasonable picture of the first thioacylenzyme intermediate characterized thus far in the ALDH family and that the position of the reduced nicotinamide moiety observed in GAPN is the one suitable for the deacylation step within all of the nonphosphorylating CoA-independent ALDH family.

Articles - 2qe0 mentioned but not cited (2)

  1. Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme A binding. Talfournier F, Stines-Chaumeil C, Branlant G. J Biol Chem 286 21971-21981 (2011)
  2. Isobutanol production freed from biological limits using synthetic biochemistry. Sherkhanov S, Korman TP, Chan S, Faham S, Liu H, Sawaya MR, Hsu WT, Vikram E, Cheng T, Bowie JU. Nat Commun 11 4292 (2020)


Reviews citing this publication (6)

  1. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Expert Opin Drug Metab Toxicol 4 697-720 (2008)
  2. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Pharmacol Rev 64 520-539 (2012)
  3. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Front Plant Sci 4 450 (2013)
  4. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Prog Retin Eye Res 33 28-39 (2013)
  5. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Shortall K, Djeghader A, Magner E, Soulimane T. Front Mol Biosci 8 659550 (2021)
  6. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Arch Biochem Biophys 493 71-81 (2010)

Articles citing this publication (42)

  1. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D, Hurley TD. Nat Struct Mol Biol 17 159-164 (2010)
  2. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site. González-Segura L, Rudiño-Piñera E, Muñoz-Clares RA, Horjales E. J Mol Biol 385 542-557 (2009)
  3. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. Di Costanzo L, Gomez GA, Christianson DW. J Mol Biol 366 481-493 (2007)
  4. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. J Mol Biol 396 870-882 (2010)
  5. Structural determinants of substrate specificity in aldehyde dehydrogenases. Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Chem Biol Interact 202 51-61 (2013)
  6. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. Schweiger P, Volland S, Deppenmeier U. J Mol Microbiol Biotechnol 13 147-155 (2007)
  7. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme. Tsybovsky Y, Krupenko SA. J Biol Chem 286 23357-23367 (2011)
  8. Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. Chen Y, Zhu JY, Hong KH, Mikles DC, Georg GI, Goldstein AS, Amory JK, Schönbrunn E. ACS Chem Biol 13 582-590 (2018)
  9. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. J Biol Chem 288 9491-9507 (2013)
  10. Structural and functional modifications of corneal crystallin ALDH3A1 by UVB light. Estey T, Chen Y, Carpenter JF, Vasiliou V. PLoS One 5 e15218 (2010)
  11. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. Lang BS, Gorren AC, Oberdorfer G, Wenzl MV, Furdui CM, Poole LB, Mayer B, Gruber K. J Biol Chem 287 38124-38134 (2012)
  12. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Muñoz-Clares RA, González-Segura L, Díaz-Sánchez AG. Chem Biol Interact 191 137-146 (2011)
  13. Inhibition of the Aldehyde Dehydrogenase 1/2 Family by Psoralen and Coumarin Derivatives. Buchman CD, Hurley TD. J Med Chem 60 2439-2455 (2017)
  14. Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition. Bchini R, Vasiliou V, Branlant G, Talfournier F, Rahuel-Clermont S. Chem Biol Interact 202 78-84 (2013)
  15. Structural and kinetic evidence that catalytic reaction of human UDP-glucose 6-dehydrogenase involves covalent thiohemiacetal and thioester enzyme intermediates. Egger S, Chaikuad A, Klimacek M, Kavanagh KL, Oppermann U, Nidetzky B. J Biol Chem 287 2119-2129 (2012)
  16. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. Redox Biol 15 557-568 (2018)
  17. The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. Tang WK, Wong KB, Lam YM, Cha SS, Cheng CH, Fong WP. FEBS Lett 582 3090-3096 (2008)
  18. Stabilization and conformational isomerization of the cofactor during the catalysis in hydrolytic ALDHs. Talfournier F, Pailot A, Stinès-Chaumeil C, Branlant G. Chem Biol Interact 178 79-83 (2009)
  19. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action. Huo L, Davis I, Liu F, Andi B, Esaki S, Iwaki H, Hasegawa Y, Orville AM, Liu A. Nat Commun 6 5935 (2015)
  20. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Hwang HJ, Park JH, Kim JH, Kong MK, Kim JW, Park JW, Cho KM, Lee PC. Biotechnol Bioeng 111 1374-1384 (2014)
  21. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. Yuan Z, Yin B, Wei D, Yuan YR. J Struct Biol 182 125-135 (2013)
  22. Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC3000. Zhang K, Lee JS, Liu R, Chan ZT, Dawson TJ, De Togni ES, Edwards CT, Eng IK, Gao AR, Goicouria LA, Hall EM, Hu KA, Huang K, Kizhner A, Kodama KC, Lin AZ, Liu JY, Lu AY, Peng OW, Ryu EP, Shi S, Sorkin ML, Walker PL, Wang GJ, Xu MC, Yang RS, Cascella B, Cruz W, Holland CK, McClerkin SA, Kunkel BN, Lee SG, Jez JM. Biosci Rep 40 BSR20202959 (2020)
  23. Tunable bromomagnesium thiolate Tishchenko reaction catalysts: intermolecular aldehyde-trifluoromethylketone coupling. Cronin L, Manoni F, O'Connor CJ, Connon SJ. Angew Chem Int Ed Engl 49 3045-3048 (2010)
  24. Invariant Thr244 is essential for the efficient acylation step of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Pailot A, D'Ambrosio K, Corbier C, Talfournier F, Branlant G. Biochem J 400 521-530 (2006)
  25. Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation. Agarwal V, Peck SC, Chen JH, Borisova SA, Chekan JR, van der Donk WA, Nair SK. Chem Biol 21 125-135 (2014)
  26. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilization in alcohol dehydrogenase active sites. Klimacek M, Nidetzky B. Biochem J 425 455-463 (2010)
  27. The quaternary structure of Thermus thermophilus aldehyde dehydrogenase is stabilized by an evolutionary distinct C-terminal arm extension. Hayes K, Noor M, Djeghader A, Armshaw P, Pembroke T, Tofail S, Soulimane T. Sci Rep 8 13327 (2018)
  28. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases. Muñoz-Clares RA, González-Segura L, Riveros-Rosas H, Julián-Sánchez A. Chem Biol Interact 234 45-58 (2015)
  29. The thiolate-catalyzed intermolecular crossed Tishchenko reaction: highly chemoselective coupling of two different aromatic aldehydes. Curran SP, Connon SJ. Angew Chem Int Ed Engl 51 10866-10870 (2012)
  30. Adenine binding mode is a key factor in triggering the early release of NADH in coenzyme A-dependent methylmalonate semialdehyde dehydrogenase. Bchini R, Dubourg-Gerecke H, Rahuel-Clermont S, Aubry A, Branlant G, Didierjean C, Talfournier F. J Biol Chem 287 31095-31103 (2012)
  31. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. Zahniser MPD, Prasad S, Kneen MM, Kreinbring CA, Petsko GA, Ringe D, McLeish MJ. Protein Eng Des Sel 30 271-278 (2017)
  32. A Pitcher-and-Catcher Mechanism Drives Endogenous Substrate Isomerization by a Dehydrogenase in Kynurenine Metabolism. Yang Y, Davis I, Ha U, Wang Y, Shin I, Liu A. J Biol Chem 291 26252-26261 (2016)
  33. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400. Bains J, Leon R, Temke KG, Boulanger MJ. Protein Sci 20 1048-1059 (2011)
  34. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features. Bezsudnova EY, Petrova TE, Artemova NV, Boyko KM, Shabalin IG, Rakitina TV, Polyakov KM, Popov VO. Archaea 2016 9127857 (2016)
  35. Letter Active site alanine preceding catalytic cysteine determines unique substrate specificity in bacterial CoA-acylating prenal dehydrogenase. Becher E, Heese A, Claußen L, Eisen S, Jehmlich N, Rohwerder T, Purswani J. FEBS Lett 592 1150-1160 (2018)
  36. An unusual effect of NADP+ on the thermostability of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Arutyunov D, Schmalhausen E, Orlov V, Rahuel-Clermont S, Nagradova N, Branlant G, Muronetz V. Biochem Cell Biol 91 295-302 (2013)
  37. Catalytic contribution of threonine 244 in human ALDH2. González-Segura L, Ho KK, Perez-Miller S, Weiner H, Hurley TD. Chem Biol Interact 202 32-40 (2013)
  38. Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction. Smith NE, Tie WJ, Flematti GR, Stubbs KA, Corry B, Attwood PV, Vrielink A. Int J Biochem Cell Biol 45 1878-1885 (2013)
  39. Engineering Embden-Meyerhof-Parnas Glycolysis to Generate Noncanonical Reducing Power. King E, Cui Y, Aspacio D, Nicklen F, Zhang L, Maxel S, Luo R, Siegel JB, Aitchison E, Li H. ACS Catal 12 8582-8592 (2022)
  40. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Commun Biol 5 354 (2022)
  41. The Non-phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase GapN Is a Potential New Drug Target in Streptococcus pyogenes. Eisenberg P, Albert L, Teuffel J, Zitzow E, Michaelis C, Jarick J, Sehlke C, Große L, Bader N, Nunes-Alves A, Kreikemeyer B, Schindelin H, Wade RC, Fiedler T. Front Microbiol 13 802427 (2022)
  42. Molecular basis of sulfolactate synthesis by sulfolactaldehyde dehydrogenase from Rhizobium leguminosarum. Li J, Sharma M, Meek R, Alhifthi A, Armstrong Z, Soler NM, Lee M, Goddard-Borger ED, Blaza JN, Davies GJ, Williams SJ. Chem Sci 14 11429-11440 (2023)