2jhz Citations

Protein crystallization by surface entropy reduction: optimization of the SER strategy.

Acta Crystallogr D Biol Crystallogr 63 636-45 (2007)
Related entries: 2bxw, 2jhs, 2jht, 2jhu, 2jhv, 2jhw, 2jhx, 2jhy, 2ji0

Cited: 79 times
EuropePMC logo PMID: 17452789

Abstract

A strategy of rationally engineering protein surfaces with the aim of obtaining mutants that are distinctly more susceptible to crystallization than the wild-type protein has previously been suggested. The strategy relies on replacing small clusters of two to three surface residues characterized by high conformational entropy with alanines. This surface entropy reduction (or SER) method has proven to be an effective salvage pathway for proteins that are difficult to crystallize. Here, a systematic comparison of the efficacy of using Ala, His, Ser, Thr and Tyr to replace high-entropy residues is reported. A total of 40 mutants were generated and screened using two different procedures. The results reaffirm that alanine is a particularly good choice for a replacement residue and identify tyrosines and threonines as additional candidates that have considerable potential to mediate crystal contacts. The propensity of these mutants to form crystals in alternative screens in which the normal crystallization reservoir solutions were replaced with 1.5 M NaCl was also examined. The results were impressive: more than half of the mutants yielded a larger number of crystals with salt as the reservoir solution. This method greatly increased the variety of conditions that yielded crystals. Taken together, these results suggest a powerful crystallization strategy that combines surface engineering with efficient screening using standard and alternate reservoir solutions.

Reviews citing this publication (15)

  1. The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. Koide S, Sidhu SS. ACS Chem Biol 4 325-334 (2009)
  2. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Moon AF, Mueller GA, Zhong X, Pedersen LC. Protein Sci 19 901-913 (2010)
  3. High-throughput protein purification and quality assessment for crystallization. Kim Y, Babnigg G, Jedrzejczak R, Eschenfeldt WH, Li H, Maltseva N, Hatzos-Skintges C, Gu M, Makowska-Grzyska M, Wu R, An H, Chhor G, Joachimiak A. Methods 55 12-28 (2011)
  4. Evolution and dynamics of protein interactions and networks. Levy ED, Pereira-Leal JB. Curr Opin Struct Biol 18 349-357 (2008)
  5. High-throughput crystallography for structural genomics. Joachimiak A. Curr Opin Struct Biol 19 573-584 (2009)
  6. Structural genomics and drug discovery for infectious diseases. Anderson WF. Infect Disord Drug Targets 9 507-517 (2009)
  7. Structural genomics: from genes to structures with valuable materials and many questions in between. Fox BG, Goulding C, Malkowski MG, Stewart L, Deacon A. Nat Methods 5 129-132 (2008)
  8. Understanding and applying tyrosine biochemical diversity. Jones LH, Narayanan A, Hett EC. Mol Biosyst 10 952-969 (2014)
  9. Large-scale structural biology of the human proteome. Edwards A. Annu Rev Biochem 78 541-568 (2009)
  10. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  11. Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. Morris JS, Facchini PJ. Front Plant Sci 10 1058 (2019)
  12. Structure-based drug discovery and protein targets in the CNS. Hubbard RE. Neuropharmacology 60 7-23 (2011)
  13. State-of-the-Art Data Management: Improving the Reproducibility, Consistency, and Traceability of Structural Biology and in Vitro Biochemical Experiments. Cooper DR, Grabowski M, Zimmerman MD, Porebski PJ, Shabalin IG, Woinska M, Domagalski MJ, Zheng H, Sroka P, Cymborowski M, Czub MP, Niedzialkowska E, Venkataramany BS, Osinski T, Fratczak Z, Bajor J, Gonera J, MacLean E, Wojciechowska K, Konina K, Wajerowicz W, Chruszcz M, Minor W. Methods Mol Biol 2199 209-236 (2021)
  14. Critical evaluation of bioinformatics tools for the prediction of protein crystallization propensity. Wang H, Feng L, Webb GI, Kurgan L, Song J, Lin D. Brief Bioinform 19 838-852 (2018)
  15. The "Sticky Patch" Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Derewenda ZS, Godzik A. Methods Mol Biol 1607 77-115 (2017)

Articles citing this publication (64)

  1. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Goehring A, Lee CH, Wang KH, Michel JC, Claxton DP, Baconguis I, Althoff T, Fischer S, Garcia KC, Gouaux E. Nat Protoc 9 2574-2585 (2014)
  2. High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. Lavinder JJ, Hari SB, Sullivan BJ, Magliery TJ. J Am Chem Soc 131 3794-3795 (2009)
  3. Computational design of a protein crystal. Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG. Proc Natl Acad Sci U S A 109 7304-7309 (2012)
  4. Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Price WN, Chen Y, Handelman SK, Neely H, Manor P, Karlin R, Nair R, Liu J, Baran M, Everett J, Tong SN, Forouhar F, Swaminathan SS, Acton T, Xiao R, Luft JR, Lauricella A, DeTitta GT, Rost B, Montelione GT, Hunt JF. Nat Biotechnol 27 51-57 (2009)
  5. Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB. Mihai Gazdag E, Streller A, Haneburger I, Hilbi H, Vetter IR, Goody RS, Itzen A. EMBO Rep 14 199-205 (2013)
  6. Structural and functional analysis of JMJD2D reveals molecular basis for site-specific demethylation among JMJD2 demethylases. Krishnan S, Trievel RC. Structure 21 98-108 (2013)
  7. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G, Holdgate G, McAlister M, Nissink JW, Truman C, Watson M. PLoS One 7 e50889 (2012)
  8. The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site. de Leon-Boenig G, Bowman KK, Feng JA, Crawford T, Everett C, Franke Y, Oh A, Stanley M, Staben ST, Starovasnik MA, Wallweber HJ, Wu J, Wu LC, Johnson AR, Hymowitz SG. Structure 20 1704-1714 (2012)
  9. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. Yanez ME, Korotkov KV, Abendroth J, Hol WG. J Mol Biol 375 471-486 (2008)
  10. Protease recognition sites in Bet v 1a are cryptic, explaining its slow processing relevant to its allergenicity. Freier R, Dall E, Brandstetter H. Sci Rep 5 12707 (2015)
  11. CRYSTALP2: sequence-based protein crystallization propensity prediction. Kurgan L, Razib AA, Aghakhani S, Dick S, Mizianty M, Jahandideh S. BMC Struct Biol 9 50 (2009)
  12. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Lee WL, Grimes JM, Robinson RC. Nat Struct Mol Biol 22 248-255 (2015)
  13. Cleavable C-terminal His-tag vectors for structure determination. Eschenfeldt WH, Maltseva N, Stols L, Donnelly MI, Gu M, Nocek B, Tan K, Kim Y, Joachimiak A. J Struct Funct Genomics 11 31-39 (2010)
  14. Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Yin W, Zhou XE, Yang D, de Waal PW, Wang M, Dai A, Cai X, Huang CY, Liu P, Wang X, Yin Y, Liu B, Zhou Y, Wang J, Liu H, Caffrey M, Melcher K, Xu Y, Wang MW, Xu HE, Jiang Y. Cell Discov 4 12 (2018)
  15. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. Nagano S, Scheerer P, Zubow K, Michael N, Inomata K, Lamparter T, Krauß N. J Biol Chem 291 20674-20691 (2016)
  16. Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. Partridge JR, Schwartz TU. J Mol Biol 391 375-389 (2009)
  17. Structural features and chaperone activity of the NudC protein family. Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Janczyk PŁ, Derewenda U, Stukenberg PT, Caldwell KA, Derewenda ZS. J Mol Biol 409 722-741 (2011)
  18. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography. Bunker RD, Mandal K, Bashiri G, Chaston JJ, Pentelute BL, Lott JS, Kent SB, Baker EN. Proc Natl Acad Sci U S A 112 4310-4315 (2015)
  19. Lessons from high-throughput protein crystallization screening: 10 years of practical experience. Luft JR, Snell EH, Detitta GT. Expert Opin Drug Discov 6 465-480 (2011)
  20. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. Bailey DC, Alexander E, Rice MR, Drake EJ, Mydy LS, Aldrich CC, Gulick AM. J Biol Chem 293 7841-7852 (2018)
  21. Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M. Structure 19 1773-1783 (2011)
  22. Crysalis: an integrated server for computational analysis and design of protein crystallization. Wang H, Feng L, Zhang Z, Webb GI, Lin D, Song J. Sci Rep 6 21383 (2016)
  23. New surface contacts formed upon reductive lysine methylation: improving the probability of protein crystallization. Sledz P, Zheng H, Murzyn K, Chruszcz M, Zimmerman MD, Chordia MD, Joachimiak A, Minor W. Protein Sci 19 1395-1404 (2010)
  24. Easy mammalian expression and crystallography of maltose-binding protein-fused human proteins. Bokhove M, Sadat Al Hosseini H, Saito T, Dioguardi E, Gegenschatz-Schmid K, Nishimura K, Raj I, de Sanctis D, Han L, Jovine L. J Struct Biol 194 1-7 (2016)
  25. Lysine Nzeta-decarboxylation switch and activation of the beta-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus. Borbulevych O, Kumarasiri M, Wilson B, Llarrull LI, Lee M, Hesek D, Shi Q, Peng J, Baker BM, Mobashery S. J Biol Chem 286 31466-31472 (2011)
  26. Structural determinants of tobacco vein mottling virus protease substrate specificity. Sun P, Austin BP, Tözsér J, Waugh DS. Protein Sci 19 2240-2251 (2010)
  27. Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations. Froese DS, Forouhar F, Tran TH, Vollmar M, Kim YS, Lew S, Neely H, Seetharaman J, Shen Y, Xiao R, Acton TB, Everett JK, Cannone G, Puranik S, Savitsky P, Krojer T, Pilka ES, Kiyani W, Lee WH, Marsden BD, von Delft F, Allerston CK, Spagnolo L, Gileadi O, Montelione GT, Oppermann U, Yue WW, Tong L. Structure 21 1182-1192 (2013)
  28. It's all in the crystals…. Derewenda ZS. Acta Crystallogr D Biol Crystallogr 67 243-248 (2011)
  29. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Close DW, Paul CD, Langan PS, Langan PS, Wilce MC, Traore DA, Halfmann R, Rocha RC, Waldo GS, Payne RJ, Rucker JB, Prescott M, Bradbury AR. Proteins 83 1225-1237 (2015)
  30. Tracing whale myoglobin evolution by resurrecting ancient proteins. Isogai Y, Imamura H, Nakae S, Sumi T, Takahashi KI, Nakagawa T, Tsuneshige A, Shirai T. Sci Rep 8 16883 (2018)
  31. Prediction of protein crystallization outcome using a hybrid method. Zucker FH, Stewart C, dela Rosa J, Kim J, Zhang L, Xiao L, Ross J, Napuli AJ, Mueller N, Castaneda LJ, Nakazawa Hewitt SR, Arakaki TL, Larson ET, Subramanian E, Verlinde CL, Fan E, Buckner FS, Van Voorhis WC, Merritt EA, Hol WG. J Struct Biol 171 64-73 (2010)
  32. Conversion of scFv peptide-binding specificity for crystal chaperone development. Pai JC, Culver JA, Drury JE, Motani RS, Lieberman RL, Maynard JA. Protein Eng Des Sel 24 419-428 (2011)
  33. Improvement of crystal quality by surface mutations of beta-lactamase Toho-1. Shimamura T, Nitanai Y, Uchiyama T, Matsuzawa H. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 379-382 (2009)
  34. Improvement of the crystallizability and expression of an RNA crystallization chaperone. Ravindran PP, Héroux A, Ye JD. J Biochem 150 535-543 (2011)
  35. Enhanced crystal packing due to solvent reorganization through reductive methylation of lysine residues in oxidoreductase from Streptococcus pneumoniae. Fan Y, Joachimiak A. J Struct Funct Genomics 11 101-111 (2010)
  36. Modification of protein crystal packing by systematic mutations of surface residues: implications on biotemplating and crystal porosity. Wine Y, Cohen-Hadar N, Lamed R, Freeman A, Frolow F. Biotechnol Bioeng 104 444-457 (2009)
  37. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily. Cooper DR, Grelewska K, Kim CY, Joachimiak A, Derewenda ZS. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 219-224 (2010)
  38. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis. Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD. Arch Biochem Biophys 513 19-26 (2011)
  39. Swift residue-screening identifies key N-glycosylated asparagines sufficient for surface expression of neuroglycoprotein Lingo-1. Zhong X, Pocas J, Liu Y, Wu PW, Mosyak L, Somers W, Kriz R. FEBS Lett 583 1034-1038 (2009)
  40. Crystal structure of the mouse interleukin-3 β-receptor: insights into interleukin-3 binding and receptor activation. Carr PD, Ewens CL, Dai J, Ollis DL, Murphy JM, Jackson CJ, Young IG. Biochem J 463 393-403 (2014)
  41. Detecting anomalies in X-ray diffraction images using convolutional neural networks. Czyzewski A, Krawiec F, Brzezinski D, Porebski PJ, Minor W. Expert Syst Appl 174 114740 (2021)
  42. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. Mackinnon SR, Krojer T, Foster WR, Diaz-Saez L, Tang M, Huber KVM, von Delft F, Lai K, Brennan PE, Arruda Bezerra G, Yue WW. ACS Chem Biol 16 586-595 (2021)
  43. Repurposing off-the-shelf antihelix antibodies for enabling structural biology. Koide S. Proc Natl Acad Sci U S A 116 17611-17613 (2019)
  44. T4 lysozyme-facilitated crystallization of the human molybdenum cofactor-dependent enzyme mARC. Kubitza C, Ginsel C, Bittner F, Havemeyer A, Clement B, Scheidig AJ. Acta Crystallogr F Struct Biol Commun 74 337-344 (2018)
  45. An unexpected outcome of surface engineering an integral membrane protein: improved crystallization of cytochrome ba(3) from Thermus thermophilus. Liu B, Luna VM, Chen Y, Stout CD, Fee JA. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 1029-1034 (2007)
  46. Common and unique strategies of myoglobin evolution for deep-sea adaptation of diving mammals. Isogai Y, Imamura H, Nakae S, Sumi T, Takahashi KI, Shirai T. iScience 24 102920 (2021)
  47. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments. Kalyoncu S, Hyun J, Pai JC, Johnson JL, Entzminger K, Jain A, Heaner DP, Morales IA, Truskett TM, Maynard JA, Lieberman RL. Proteins 82 1884-1895 (2014)
  48. Highlighting the potential utility of MBP crystallization chaperone for Arabidopsis BIL1/BZR1 transcription factor-DNA complex. Nosaki S, Terada T, Nakamura A, Hirabayashi K, Xu Y, Bui TBC, Nakano T, Tanokura M, Miyakawa T. Sci Rep 11 3879 (2021)
  49. Structural Changes in the Cap of Rv0183/mtbMGL Modulate the Shape of the Binding Pocket. Grininger C, Leypold M, Aschauer P, Pavkov-Keller T, Riegler-Berket L, Breinbauer R, Oberer M. Biomolecules 11 1299 (2021)
  50. Toward the computational design of protein crystals with improved resolution. Jeliazkov JR, Robinson AC, García-Moreno E B, Berger JM, Gray JJ. Acta Crystallogr D Struct Biol 75 1015-1027 (2019)
  51. Crystallization and preliminary X-ray crystallographic analysis of the hexameric human p97/VCP ND1 fragment in complex with the UBX domain of human FAF1. Kang W, Yang JK. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1199-1202 (2011)
  52. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Ibeta/INHAT crystals. Senda M, Muto S, Horikoshi M, Senda T. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 960-965 (2008)
  53. Engineered antigen-binding fragments for enhanced crystallization of antibody:antigen complexes. Bruce HA, Singer AU, Filippova EV, Blazer LL, Adams JJ, Enderle L, Ben-David M, Radley EH, Mao DYL, Pau V, Orlicky S, Sicheri F, Kurinov I, Atwell S, Kossiakoff AA, Sidhu SS. Protein Sci 33 e4824 (2024)
  54. MBP-binding DARPins facilitate the crystallization of an MBP fusion protein. Gumpena R, Lountos GT, Waugh DS. Acta Crystallogr F Struct Biol Commun 74 549-557 (2018)
  55. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Venkatesan M, Fruci M, Verellen LA, Skarina T, Mesa N, Flick R, Pham C, Mahadevan R, Stogios PJ, Savchenko A. Nat Commun 14 4031 (2023)
  56. Protein crystallization in drug design: towards a rational approach. Derewenda ZS. Expert Opin Drug Discov 2 1329-1340 (2007)
  57. A recurring packing contact in crystals of InlB pinpoints functional binding sites in the internalin domain and the B repeat. Geerds C, Bleymüller WM, Meyer T, Widmann C, Niemann HH. Acta Crystallogr D Struct Biol 78 310-320 (2022)
  58. Crystal structure and activity of a de novo enzyme, ferric enterobactin esterase Syn-F4. Kurihara K, Umezawa K, Donnelly AE, Sperling B, Liao G, Hecht MH, Arai R. Proc Natl Acad Sci U S A 120 e2218281120 (2023)
  59. Improvement of the quality of lumazine synthase crystals by protein engineering. Rodríguez-Fernández L, López-Jaramillo FJ, Bacher A, Fischer M, Weinkauf S. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 625-628 (2008)
  60. Influence of precipitating agents on thermodynamic parameters of protein crystallization solutions. Stavros P, Saridakis E, Nounesis G. Biopolymers 105 642-652 (2016)
  61. PROSPERO: online prediction of crystallographic success from experimental results and sequence. Zucker FH, Kim HY, Merritt EA. J Appl Crystallogr 45 598-602 (2012)
  62. Structures of the DarR transcription regulator reveal unique modes of second messenger and DNA binding. Schumacher MA, Lent N, Chen VB, Salinas R. Nat Commun 14 7239 (2023)
  63. Surface Engineering of Top7 to Facilitate Structure Determination. Ito Y, Araki T, Shiga S, Konno H, Makabe K. Int J Mol Sci 23 701 (2022)
  64. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Foods 12 879 (2023)