2j1y Citations

Structural basis for understanding oncogenic p53 mutations and designing rescue drugs.

Proc Natl Acad Sci U S A 103 15056-61 (2006)
Related entries: 1uol, 2bim, 2bin, 2bio, 2bip, 2biq, 2j1w, 2j1x, 2j1z, 2j20, 2j21

Cited: 190 times
EuropePMC logo PMID: 17015838

Abstract

The DNA-binding domain of the tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. We have solved high-resolution crystal structures of several oncogenic mutants to investigate the structural basis of inactivation and provide information for designing drugs that may rescue inactivated mutants. We found a variety of structural consequences upon mutation: (i) the removal of an essential contact with DNA, (ii) creation of large, water-accessible crevices or hydrophobic internal cavities with no other structural changes but with a large loss of thermodynamic stability, (iii) distortion of the DNA-binding surface, and (iv) alterations to surfaces not directly involved in DNA binding but involved in domain-domain interactions on binding as a tetramer. These findings explain differences in functional properties and associated phenotypes (e.g., temperature sensitivity). Some mutants have the potential of being rescued by a generic stabilizing drug. In addition, a mutation-induced crevice is a potential target site for a mutant-selective stabilizing drug.

Reviews - 2j1y mentioned but not cited (1)

  1. Structural and Drug Targeting Insights on Mutant p53. Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Cancers (Basel) 13 3344 (2021)

Articles - 2j1y mentioned but not cited (5)

  1. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Joerger AC, Ang HC, Fersht AR. Proc Natl Acad Sci U S A 103 15056-15061 (2006)
  2. Benchmarks for flexible and rigid transcription factor-DNA docking. Kim R, Corona RI, Hong B, Guo JT. BMC Struct Biol 11 45 (2011)
  3. Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution. Tu C, Tan YH, Shaw G, Zhou Z, Bai Y, Luo R, Ji X. Acta Crystallogr D Biol Crystallogr 64 471-477 (2008)
  4. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Bromley D, Daggett V. Protein Sci 29 1983-1999 (2020)
  5. Mechanism of Tianma Gouteng Decoction in the treatment of Parkinson's disease based on network pharmacology and molecular docking. Ni P, Zhao B, Pang Y, Pan K. Am J Transl Res 15 596-611 (2023)


Reviews citing this publication (52)

  1. TP53 mutations in human cancers: origins, consequences, and clinical use. Olivier M, Hollstein M, Hainaut P. Cold Spring Harb Perspect Biol 2 a001008 (2010)
  2. Awakening guardian angels: drugging the p53 pathway. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Nat Rev Cancer 9 862-873 (2009)
  3. Targeting mutant p53 for efficient cancer therapy. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Nat Rev Cancer 18 89-102 (2018)
  4. Structural biology of the tumor suppressor p53. Joerger AC, Fersht AR. Annu Rev Biochem 77 557-582 (2008)
  5. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  6. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Joerger AC, Fersht AR. Oncogene 26 2226-2242 (2007)
  7. The role of p53 in cancer drug resistance and targeted chemotherapy. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. Oncotarget 8 8921-8946 (2017)
  8. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  9. p53-based cancer therapy. Lane DP, Cheok CF, Lain S. Cold Spring Harb Perspect Biol 2 a001222 (2010)
  10. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Chem Rev 114 6844-6879 (2014)
  11. Transcription regulation by mutant p53. Weisz L, Oren M, Rotter V. Oncogene 26 2202-2211 (2007)
  12. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Selivanova G, Wiman KG. Oncogene 26 2243-2254 (2007)
  13. Recent advances in p53 research: an interdisciplinary perspective. Olivier M, Petitjean A, Marcel V, Pétré A, Mounawar M, Plymoth A, de Fromentel CC, Hainaut P. Cancer Gene Ther 16 1-12 (2009)
  14. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Wiman KG. Oncogene 29 4245-4252 (2010)
  15. The missing zinc: p53 misfolding and cancer. Loh SN. Metallomics 2 442-449 (2010)
  16. The consequence of oncomorphic TP53 mutations in ovarian cancer. Brachova P, Thiel KW, Leslie KK. Int J Mol Sci 14 19257-19275 (2013)
  17. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of p53. Pfister NT, Prives C. Cold Spring Harb Perspect Med 7 a026054 (2017)
  18. Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target. Schulz-Heddergott R, Moll UM. Cancers (Basel) 10 E188 (2018)
  19. Translational approaches targeting the p53 pathway for anti-cancer therapy. Essmann F, Schulze-Osthoff K. Br J Pharmacol 165 328-344 (2012)
  20. Drugging p53 in cancer: one protein, many targets. Hassin O, Oren M. Nat Rev Drug Discov 22 127-144 (2023)
  21. Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Blanden AR, Yu X, Loh SN, Levine AJ, Carpizo DR. Drug Discov Today 20 1391-1397 (2015)
  22. Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Dickens MP, Fitzgerald R, Fischer PM. Semin Cancer Biol 20 10-18 (2010)
  23. Current developments of targeting the p53 signaling pathway for cancer treatment. Huang J. Pharmacol Ther 220 107720 (2021)
  24. Targeting mutant p53 in human tumors. Lehmann BD, Pietenpol JA. J Clin Oncol 30 3648-3650 (2012)
  25. Small molecule compounds targeting the p53 pathway: are we finally making progress? Yu X, Narayanan S, Vazquez A, Carpizo DR. Apoptosis 19 1055-1068 (2014)
  26. Arylamine N-acetyltransferases. Sim E, Westwood I, Fullam E. Expert Opin Drug Metab Toxicol 3 169-184 (2007)
  27. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  28. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. Estrada-Ortiz N, Neochoritis CG, Dömling A. ChemMedChem 11 757-772 (2016)
  29. Structural and sequential context of p53: A review of experimental and theoretical evidence. Saha T, Kar RK, Sa G. Prog Biophys Mol Biol 117 250-263 (2015)
  30. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. Silva JL, Cordeiro Y. J Biol Chem 291 15482-15490 (2016)
  31. Clinical Outcomes of TP53 Mutations in Cancers. Robles AI, Jen J, Harris CC. Cold Spring Harb Perspect Med 6 a026294 (2016)
  32. Reviving the guardian of the genome: Small molecule activators of p53. Nguyen D, Liao W, Zeng SX, Lu H. Pharmacol Ther 178 92-108 (2017)
  33. Interactions of mutant p53 with DNA: guilt by association. Kim E, Deppert W. Oncogene 26 2185-2190 (2007)
  34. AlphaFold, Artificial Intelligence (AI), and Allostery. Nussinov R, Zhang M, Liu Y, Jang H. J Phys Chem B 126 6372-6383 (2022)
  35. Gain of function of mutant p53: R282W on the peak? Zhang Y, Coillie SV, Fang JY, Xu J. Oncogenesis 5 e196 (2016)
  36. Resuscitating wild-type p53 expression by disrupting ceramide glycosylation: a novel approach to target mutant p53 tumors. Liu YY. Cancer Res 71 6295-6299 (2011)
  37. TP53 in Biology and Treatment of Osteosarcoma. Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. Cancers (Basel) 13 4284 (2021)
  38. Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Onaindia A, Medeiros LJ, Patel KP. Mod Pathol 30 1338-1366 (2017)
  39. Data resources for the identification and interpretation of actionable mutations by clinicians. Prawira A, Pugh TJ, Stockley TL, Siu LL. Ann Oncol 28 946-957 (2017)
  40. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. Tan YS, Mhoumadi Y, Verma CS. J Mol Cell Biol 11 306-316 (2019)
  41. Shifting the paradigms for tumor suppression: lessons from the p53 field. Barnoud T, Indeglia A, Murphy ME. Oncogene 40 4281-4290 (2021)
  42. Zinc Metallochaperones as Mutant p53 Reactivators: A New Paradigm in Cancer Therapeutics. Kogan S, Carpizo DR. Cancers (Basel) 10 E166 (2018)
  43. Therapeutic Strategies Targeting Tumor Suppressor Genes in Pancreatic Cancer. Kuo KK, Hsiao PJ, Chang WT, Chuang SC, Yang YH, Wuputra K, Ku CC, Pan JB, Li CP, Kato K, Liu CJ, Wu DC, Yokoyama KK. Cancers (Basel) 13 3920 (2021)
  44. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Cancer Cell Int 22 416 (2022)
  45. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Front Mol Biosci 9 944955 (2022)
  46. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Timofeev O, Stiewe T. Cancers (Basel) 13 2422 (2021)
  47. Therapeutic Strategies to Activate p53. Aguilar A, Wang S. Pharmaceuticals (Basel) 16 24 (2022)
  48. Anticancer Therapeutic Strategies Targeting p53 Aggregation. Ferretti GDS, Quarti J, Dos Santos G, Rangel LP, Silva JL. Int J Mol Sci 23 11023 (2022)
  49. Clinical applications of liquid biopsy in HPV-negative and HPV-positive head and neck squamous cell carcinoma: advances and challenges. Chantre-Justino M, Alves G, Delmonico L. Explor Target Antitumor Ther 3 533-552 (2022)
  50. Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Domené S, Scaglia PA, Gutiérrez ML, Domené HM. Cells 10 2063 (2021)
  51. Small-molecule correctors and stabilizers to target p53. Fallatah MMJ, Law FV, Chow WA, Kaiser P. Trends Pharmacol Sci 44 274-289 (2023)
  52. A new wave of innovations within the DNA damage response. Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. Signal Transduct Target Ther 8 338 (2023)

Articles citing this publication (132)

  1. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC. Nucleic Acids Res 35 W375-83 (2007)
  2. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Pires DE, Ascher DB, Blundell TL. Bioinformatics 30 335-342 (2014)
  3. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A, Liu WM, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Zhao XF, Choi WW, Zhao X, van Krieken JH, Huang Q, Huh J, Ai W, Ponzoni M, Ferreri AJ, Zhou F, Kahl BS, Winter JN, Xu W, Li J, Go RS, Li Y, Piris MA, Møller MB, Miranda RN, Abruzzo LV, Medeiros LJ, Young KH. Blood 120 3986-3996 (2012)
  4. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Proc Natl Acad Sci U S A 105 10360-10365 (2008)
  5. SDM: a server for predicting effects of mutations on protein stability. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. Nucleic Acids Res 45 W229-W235 (2017)
  6. Small molecule induced reactivation of mutant p53 in cancer cells. Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, Spencer J, Fersht AR. Nucleic Acids Res 41 6034-6044 (2013)
  7. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM. J Am Chem Soc 134 6810-6818 (2012)
  8. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Argentaro A, Yang JC, Chapman L, Kowalczyk MS, Gibbons RJ, Higgs DR, Neuhaus D, Rhodes D. Proc Natl Acad Sci U S A 104 11939-11944 (2007)
  9. TP53 Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. Qian M, Cao X, Devidas M, Yang W, Cheng C, Dai Y, Carroll A, Heerema NA, Zhang H, Moriyama T, Gastier-Foster JM, Xu H, Raetz E, Larsen E, Winick N, Bowman WP, Martin PL, Mardis ER, Fulton R, Zambetti G, Borowitz M, Wood B, Nichols KE, Carroll WL, Pui CH, Mullighan CG, Evans WE, Hunger SP, Relling MV, Loh ML, Yang JJ. J Clin Oncol 36 591-599 (2018)
  10. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Wilcken R, Wang G, Boeckler FM, Fersht AR. Proc Natl Acad Sci U S A 109 13584-13589 (2012)
  11. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Rajagopalan S, Huang F, Fersht AR. Nucleic Acids Res 39 2294-2303 (2011)
  12. Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro. Mayer S, Rüdiger S, Ang HC, Joerger AC, Fersht AR. J Mol Biol 372 268-276 (2007)
  13. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Bauer MR, Joerger AC, Fersht AR. Proc Natl Acad Sci U S A 113 E5271-80 (2016)
  14. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Basse N, Kaar JL, Settanni G, Joerger AC, Rutherford TJ, Fersht AR. Chem Biol 17 46-56 (2010)
  15. Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, Luo Y, Zhou H, Chen W, Shen T, Huang S. Carcinogenesis 33 868-875 (2012)
  16. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M, Syu T, Magliery TJ. J Mol Biol 420 384-399 (2012)
  17. Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. Natan E, Baloglu C, Pagel K, Freund SM, Morgner N, Robinson CV, Fersht AR, Joerger AC. J Mol Biol 409 358-368 (2011)
  18. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. Ghosh RP, Ghosh RP, Horowitz-Scherer RA, Nikitina T, Gierasch LM, Woodcock CL. J Biol Chem 283 20523-20534 (2008)
  19. A comparison of multiscale methods for the analysis of molecular dynamics simulations. Benson NC, Daggett V. J Phys Chem B 116 8722-8731 (2012)
  20. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. Jordan JJ, Inga A, Conway K, Edmiston S, Carey LA, Wu L, Resnick MA. Mol Cancer Res 8 701-716 (2010)
  21. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Turrell FK, Kerr EM, Gao M, Thorpe H, Doherty GJ, Cridge J, Shorthouse D, Speed A, Samarajiwa S, Hall BA, Griffiths M, Martins CP. Genes Dev 31 1339-1353 (2017)
  22. 30 years and a long way into p53 research. Hainaut P, Wiman KG. Lancet Oncol 10 913-919 (2009)
  23. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Kaar JL, Basse N, Joerger AC, Stephens E, Rutherford TJ, Fersht AR. Protein Sci 19 2267-2278 (2010)
  24. Structural basis for mutation-induced destabilization of profilin 1 in ALS. Boopathy S, Silvas TV, Tischbein M, Jansen S, Shandilya SM, Zitzewitz JA, Landers JE, Goode BL, Schiffer CA, Bosco DA. Proc Natl Acad Sci U S A 112 7984-7989 (2015)
  25. Clinical implications of phosphorylated STAT3 expression in De Novo diffuse large B-cell lymphoma. Ok CY, Chen J, Xu-Monette ZY, Tzankov A, Manyam GC, Li L, Visco C, Montes-Moreno S, Dybkær K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WW, van Krieken JH, Huh J, Zhao X, Ponzoni M, Ferreri AJ, Bertoni F, Farnen JP, Møller MB, Piris MA, Winter JN, Medeiros LJ, Young KH. Clin Cancer Res 20 5113-5123 (2014)
  26. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Eldar A, Rozenberg H, Diskin-Posner Y, Rohs R, Shakked Z. Nucleic Acids Res 41 8748-8759 (2013)
  27. Ultraslow oligomerization equilibria of p53 and its implications. Natan E, Hirschberg D, Morgner N, Robinson CV, Fersht AR. Proc Natl Acad Sci U S A 106 14327-14332 (2009)
  28. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJ, Frolow F, Liran A, Rotter V, Shakked Z. J Mol Biol 385 249-265 (2009)
  29. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Bauer MR, Jones RN, Tareque RK, Springett B, Dingler FA, Verduci L, Patel KJ, Fersht AR, Joerger AC, Spencer J. Future Med Chem 11 2491-2504 (2019)
  30. p53 binding to nucleosomal DNA depends on the rotational positioning of DNA response element. Sahu G, Wang D, Chen CB, Zhurkin VB, Harrington RE, Appella E, Hager GL, Nagaich AK. J Biol Chem 285 1321-1332 (2010)
  31. Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas. Kang HC, Kim HK, Lee S, Mendez P, Kim JW, Woodard G, Yoon JH, Jen KY, Fang LT, Jones K, Jablons DM, Kim IJ. Oncotarget 7 8321-8331 (2016)
  32. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Eur J Med Chem 152 101-114 (2018)
  33. Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers. Tuna M, Ju Z, Yoshihara K, Amos CI, Tanyi JL, Mills GB. Br J Cancer 122 405-412 (2020)
  34. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. De Grandis V, Bizzarri AR, Cannistraro S. J Mol Recognit 20 215-226 (2007)
  35. Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53. Joerger AC, Bauer MR, Wilcken R, Baud MGJ, Harbrecht H, Exner TE, Boeckler FM, Spencer J, Fersht AR. Structure 23 2246-2255 (2015)
  36. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. Bauer MR, Jones RN, Baud MG, Wilcken R, Boeckler FM, Fersht AR, Joerger AC, Spencer J. ACS Chem Biol 11 2265-2274 (2016)
  37. Using halogen bonds to address the protein backbone: a systematic evaluation. Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM. J Comput Aided Mol Des 26 935-945 (2012)
  38. Molecular dynamics simulations of p53 DNA-binding domain. Lu Q, Tan YH, Luo R. J Phys Chem B 111 11538-11545 (2007)
  39. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability. Li G, Panday SK, Alexov E. Int J Mol Sci 22 E606 (2021)
  40. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics. Lukman S, Lane DP, Verma CS. PLoS One 8 e80221 (2013)
  41. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML. J Cell Physiol 225 394-405 (2010)
  42. Therapeutic targeting of BRCA1 and TP53 mutant breast cancer through mutant p53 reactivation. Na B, Yu X, Withers T, Gilleran J, Yao M, Foo TK, Chen C, Moore D, Lin Y, Kimball SD, Xia B, Ganesan S, Carpizo DR. NPJ Breast Cancer 5 14 (2019)
  43. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain. Calhoun S, Daggett V. Biochemistry 50 5345-5353 (2011)
  44. Development of new preclinical models to advance adrenocortical carcinoma research. Kiseljak-Vassiliades K, Zhang Y, Bagby SM, Kar A, Pozdeyev N, Xu M, Gowan K, Sharma V, Raeburn CD, Albuja-Cruz M, Jones KL, Fishbein L, Schweppe RE, Somerset H, Pitts TM, Leong S, Wierman ME. Endocr Relat Cancer 25 437-451 (2018)
  45. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Alexander KA, Coté A, Nguyen SC, Zhang L, Gholamalamdari O, Agudelo-Garcia P, Lin-Shiao E, Tanim KMA, Lim J, Biddle N, Dunagin MC, Good CR, Mendoza MR, Little SC, Belmont A, Joyce EF, Raj A, Berger SL. Mol Cell 81 1666-1681.e6 (2021)
  46. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants. Demir Ö, Baronio R, Salehi F, Wassman CD, Hall L, Hatfield GW, Chamberlin R, Kaiser P, Lathrop RH, Amaro RE. PLoS Comput Biol 7 e1002238 (2011)
  47. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Merabet A, Houlleberghs H, Maclagan K, Akanho E, Bui TT, Pagano B, Drake AF, Fraternali F, Nikolova PV. Biochem J 427 225-236 (2010)
  48. FUSE Binding Protein 1 Facilitates Persistent Hepatitis C Virus Replication in Hepatoma Cells by Regulating Tumor Suppressor p53. Dixit U, Pandey AK, Liu Z, Kumar S, Neiditch MB, Klein KM, Pandey VN. J Virol 89 7905-7921 (2015)
  49. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Degtjarik O, Golovenko D, Diskin-Posner Y, Abrahmsén L, Rozenberg H, Shakked Z. Nat Commun 12 7057 (2021)
  50. Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. Bauer MR, Krämer A, Settanni G, Jones RN, Ni X, Khan Tareque R, Fersht AR, Spencer J, Joerger AC. ACS Chem Biol 15 657-668 (2020)
  51. Adaptive evolution of p53 thermodynamic stability. Khoo KH, Andreeva A, Fersht AR. J Mol Biol 393 161-175 (2009)
  52. Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective. Doss CG, Chakraborty C, Chen L, Zhu H. Biomed Res Int 2014 895831 (2014)
  53. Cancer: Mutant p53 and chromatin regulation. Prives C, Lowe SW. Nature 525 199-200 (2015)
  54. TP53 mutational landscape of metastatic head and neck cancer reveals patterns of mutation selection. Klinakis A, Rampias T. EBioMedicine 58 102905 (2020)
  55. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity. Gardella KA, Muro I, Fang G, Sarkar K, Mendez O, Wright CW. Oncotarget 7 10710-10722 (2016)
  56. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. Stephenson Clarke JR, Douglas LR, Duriez PJ, Balourdas DI, Joerger AC, Khadiullina R, Bulatov E, Baud MGJ. ACS Pharmacol Transl Sci 5 1169-1180 (2022)
  57. R248Q mutation--Beyond p53-DNA binding. Ng JW, Lama D, Lukman S, Lane DP, Verma CS, Sim AY. Proteins 83 2240-2250 (2015)
  58. A rare DNA contact mutation in cancer confers p53 gain-of-function and tumor cell survival via TNFAIP8 induction. Monteith JA, Mellert H, Sammons MA, Kuswanto LA, Sykes SM, Resnick-Silverman L, Manfredi JJ, Berger SL, McMahon SB. Mol Oncol 10 1207-1220 (2016)
  59. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. Olotu FA, Soliman MES. J Cell Biochem 119 2646-2652 (2018)
  60. Low prevalence of p53, p16(INK4a) and Ha-ras tumour-specific mutations in low-graded actinic keratosis. Nindl I, Gottschling M, Krawtchenko N, Lehmann MD, Röwert-Huber J, Eberle J, Stockfleth E, Forschner T. Br J Dermatol 156 Suppl 3 34-39 (2007)
  61. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Nucleic Acids Res 47 1637-1652 (2019)
  62. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core. Khoo KH, Joerger AC, Freund SM, Fersht AR. Protein Eng Des Sel 22 421-430 (2009)
  63. Stability of p53 homologs. Brandt T, Kaar JL, Fersht AR, Veprintsev DB. PLoS One 7 e47889 (2012)
  64. Novel Isatin-based activator of p53 transcriptional functions in tumor cells. Mirgayazova R, Khadiullina R, Mingaleeva R, Chasov V, Gomzikova M, Garanina E, Rizvanov A, Bulatov E. Mol Biol Res Commun 8 119-128 (2019)
  65. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, Micke P, Pavlova S, Pospisilova S, Smardova J, Joerger AC, Wiman KG, Kroemer G, Soussi T. Cell Death Differ 28 1477-1492 (2021)
  66. Identifying druggable targets by protein microenvironments matching: application to transcription factors. Liu T, Altman RB. CPT Pharmacometrics Syst Pharmacol 3 e93 (2014)
  67. Mechanism of DNA-binding loss upon single-point mutation in p53. Wright JD, Lim C. J Biosci 32 827-839 (2007)
  68. Simul-seq: combined DNA and RNA sequencing for whole-genome and transcriptome profiling. Reuter JA, Spacek DV, Pai RK, Snyder MP. Nat Methods 13 953-958 (2016)
  69. Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery. Zimmermann MO, Lange A, Wilcken R, Cieslik MB, Exner TE, Joerger AC, Koch P, Boeckler FM. Future Med Chem 6 617-639 (2014)
  70. Constitutive Activation of DNA Damage Checkpoint Signaling Contributes to Mutant p53 Accumulation via Modulation of p53 Ubiquitination. Frum RA, Love IM, Damle PK, Mukhopadhyay ND, Palit Deb S, Deb S, Grossman SR. Mol Cancer Res 14 423-436 (2016)
  71. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Tam B, Sinha S, Wang SM. Comput Struct Biotechnol J 18 4033-4039 (2020)
  72. Hydrogen Bond Dynamic Propensity Studies for Protein Binding and Drug Design. Menéndez CA, Accordino SR, Gerbino DC, Appignanesi GA. PLoS One 11 e0165767 (2016)
  73. Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA. Lepre MG, Omar SI, Grasso G, Morbiducci U, Deriu MA, Tuszynski JA. Molecules 22 E1358 (2017)
  74. The gain of function of p53 mutant p53S in promoting tumorigenesis by cross-talking with H-RasV12. Jia S, Zhao L, Tang W, Luo Y. Int J Biol Sci 8 596-605 (2012)
  75. The mutational landscape of early- and typical-onset oral tongue squamous cell carcinoma. Campbell BR, Chen Z, Faden DL, Agrawal N, Li RJ, Hanna GJ, Iyer NG, Boot A, Rozen SG, Vettore AL, Panda B, Krishnan NM, Pickering CR, Myers JN, Guo X, Lang Kuhs KA. Cancer 127 544-553 (2021)
  76. Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. Sundar D, Yu Y, Katiyar SP, Putri JF, Dhanjal JK, Wang J, Sari AN, Kolettas E, Kaul SC, Wadhwa R. J Exp Clin Cancer Res 38 103 (2019)
  77. Experimental and Theoretical Evaluation of the Ethynyl Moiety as a Halogen Bioisostere. Wilcken R, Zimmermann MO, Bauer MR, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM. ACS Chem Biol 10 2725-2732 (2015)
  78. Recombinant Newcastle disease virus expressing P53 demonstrates promising antitumor efficiency in hepatoma model. An Y, Liu T, He J, Wu H, Chen R, Liu Y, Wu Y, Bai Y, Guo X, Zheng Q, Liu C, Yin J, Li D, Ren G. J Biomed Sci 23 55 (2016)
  79. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. Proc Natl Acad Sci U S A 116 17470-17479 (2019)
  80. A novel p53 mutant found in iatrogenic urothelial cancers is dysfunctional and can be rescued by a second-site global suppressor mutation. Odell AF, Odell LR, Askham JM, Alogheli H, Ponnambalam S, Hollstein M. J Biol Chem 288 16704-16714 (2013)
  81. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein. Bromley D, Bauer MR, Fersht AR, Daggett V. Protein Eng Des Sel 29 377-390 (2016)
  82. Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53. Nguyen C, Nguyen VD. Biomed Res Int 2016 8490482 (2016)
  83. Effect of Y220C mutation on p53 and its rescue mechanism: a computer chemistry approach. Rauf SM, Endou A, Takaba H, Miyamoto A. Protein J 32 68-74 (2013)
  84. Rapid profiling of disease alleles using a tunable reporter of protein misfolding. Pittman AM, Lage MD, Poltoratsky V, Vrana JD, Paiardini A, Roncador A, Cellini B, Hughes RM, Tucker CL. Genetics 192 831-842 (2012)
  85. Stability of the core domain of p53: insights from computer simulations. Madhumalar A, Smith DJ, Verma C. BMC Bioinformatics 9 Suppl 1 S17 (2008)
  86. TA*p63 and GTAp63 achieve tighter transcriptional regulation in quality control by converting an inhibitory element into an additional transactivation domain. Pitzius S, Osterburg C, Gebel J, Tascher G, Schäfer B, Zhou H, Münch C, Dötsch V. Cell Death Dis 10 686 (2019)
  87. A spiroligomer α-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. Brown ZZ, Akula K, Arzumanyan A, Alleva J, Jackson M, Bichenkov E, Sheffield JB, Feitelson MA, Schafmeister CE. PLoS One 7 e45948 (2012)
  88. Effects of stability on the biological function of p53. Khoo KH, Mayer S, Fersht AR. J Biol Chem 284 30974-30980 (2009)
  89. Evaluating Drosophila p53 as a model system for studying cancer mutations. Herzog G, Joerger AC, Shmueli MD, Fersht AR, Gazit E, Segal D. J Biol Chem 287 44330-44337 (2012)
  90. Protective effect of the Y220C mutant p53 against steatosis: good news? Gori M, Barbaro B, Arciello M, Maggio R, Viscomi C, Longo A, Balsano C. J Cell Physiol 229 1182-1192 (2014)
  91. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: Application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease Alkaptonuria. Bernini A, Galderisi S, Spiga O, Bernardini G, Niccolai N, Manetti F, Santucci A. Comput Biol Chem 70 133-141 (2017)
  92. Tracing the protectors path from the germ line to the genome. Coutandin D, Ou HD, Löhr F, Dötsch V. Proc Natl Acad Sci U S A 107 15318-15325 (2010)
  93. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. Olotu FA, Soliman MES. J Cell Biochem 120 951-966 (2019)
  94. Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53. Kamagata K, Mano E, Itoh Y, Wakamoto T, Kitahara R, Kanbayashi S, Takahashi H, Murata A, Kameda T. Sci Rep 9 8584 (2019)
  95. A Small Molecule Reacts with the p53 Somatic Mutant Y220C to Rescue Wild-type Thermal Stability. Guiley KZ, Shokat KM. Cancer Discov 13 56-69 (2023)
  96. A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and Azurin. Bizzarri AR, Di Agostino S, Andolfi L, Cannistraro S. J Mol Recognit 22 506-515 (2009)
  97. Core domain mutant Y220C of p53 protein has a key role in copper homeostasis in case of free fatty acids overload. Arciello M, Longo A, Viscomi C, Capo C, Angeloni A, Rossi L, Balsano C. Biometals 28 1017-1029 (2015)
  98. Molecular mechanisms of functional rescue mediated by P53 tumor suppressor mutations. Tan YH, Chen YM, Ye X, Lu Q, Tretyachenko-Ladokhina V, Yang W, Senear DF, Luo R. Biophys Chem 145 37-44 (2009)
  99. Pharmacological targeting of mutant p53. Kogan S, Carpizo D. Transl Cancer Res 5 698-706 (2016)
  100. Prognostic implications and interaction of L1 methylation and p53 expression statuses in advanced gastric cancer. Shin YJ, Kim Y, Wen X, Cho NY, Lee S, Kim WH, Kang GH. Clin Epigenetics 11 77 (2019)
  101. Wrapping effects within a proposed function-rescue strategy for the Y220C oncogenic mutation of protein p53. Accordino SR, Rodríguez Fris JA, Appignanesi GA. PLoS One 8 e55123 (2013)
  102. Markov state models and NMR uncover an overlooked allosteric loop in p53. Barros EP, Demir Ö, Soto J, Cocco MJ, Amaro RE. Chem Sci 12 1891-1900 (2020)
  103. Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase. Cha HJ, Jang DS, Kim YG, Hong BH, Woo JS, Kim KT, Choi KY. Mol Cells 36 39-46 (2013)
  104. Virilizing adrenocortical carcinoma in a child with Turner syndrome and somatic TP53 gene mutation. Ko JH, Lee HS, Hong J, Hwang JS. Eur J Pediatr 169 501-504 (2010)
  105. Active Constituents from Liriope platyphylla Root against Cancer Growth In Vitro. Wang HC, Wu CC, Cheng TS, Kuo CY, Tsai YC, Chiang SY, Wong TS, Wu YC, Chang FR. Evid Based Complement Alternat Med 2013 857929 (2013)
  106. The novel p53 isoform "delta p53" is a misfolded protein and does not bind the p21 promoter site. García-Alai MM, Tidow H, Natan E, Townsley FM, Veprintsev DB, Fersht AR. Protein Sci 17 1671-1678 (2008)
  107. DIVE: a data intensive visualization engine. Bromley D, Rysavy SJ, Su R, Toofanny RD, Schmidlin T, Daggett V. Bioinformatics 30 593-595 (2014)
  108. Hypothermia Effectively Treats Tumors with Temperature-Sensitive p53 Mutations. Lu J, Chen L, Song Z, Das M, Chen J. Cancer Res 81 3905-3915 (2021)
  109. Protein evolution via amino acid and codon elimination. Goltermann L, Larsen MS, Banerjee R, Joerger AC, Ibba M, Bentin T. PLoS One 5 e10104 (2010)
  110. Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers. Ashworth J, Bernard B, Reynolds S, Plaisier CL, Shmulevich I, Baliga NS. Nucleic Acids Res 42 12973-12983 (2014)
  111. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions. Zhang Y, Liu X, Chen J. J Chem Inf Model 62 4523-4536 (2022)
  112. Caffeic acid phenethyl ester (CAPE) confers wild type p53 function in p53Y220C mutant: bioinformatics and experimental evidence. Radhakrishnan N, Dhanjal JK, Sari AN, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Discov Oncol 12 64 (2021)
  113. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode. Němcová K, Sebest P, Havran L, Orság P, Fojta M, Pivoňková H. Anal Bioanal Chem 406 5843-5852 (2014)
  114. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. Hepatology 78 727-740 (2023)
  115. An in silico approach in predicting the possible mechanism involving restoration of wild-type p53 functions by small molecular weight compounds in tumor cells expressing R273H mutant p53. Malami I, Muhammad A, Muhammad A, Etti IC, Waziri PM, Alhassan AM. EXCLI J 16 1276-1287 (2017)
  116. Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Zhang Q, Balourdas DI, Baron B, Senitzki A, Haran TE, Wiman KG, Soussi T, Joerger AC. Cell Death Dis 13 214 (2022)
  117. Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease. Dehiya V, Thomas J, Sael L. PLoS One 13 e0204101 (2018)
  118. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants. Koulgi S, Achalere A, Sharma N, Sonavane U, Joshi R. J Mol Model 19 5545-5559 (2013)
  119. Switch region for pathogenic structural change in conformational disease and its prediction. Liu X, Zhao YP. PLoS One 5 e8441 (2010)
  120. Case Reports Therapeutic implications of intratumor heterogeneity for TP53 mutational status in Burkitt lymphoma. Derenzini E, Iacobucci I, Agostinelli C, Imbrogno E, Storlazzi CT, L Abbate A, Casadei B, Ferrari A, Di Rora AG, Martinelli G, Pileri S, Zinzani PL. Exp Hematol Oncol 4 24 (2015)
  121. c.428T > C (p.V143A) homozygous mutation in TP53 gene as a possible mechanism of resistance to trastuzumab therapy in gastric cancer. Moroni M, Stella M, Pedrazzoli P, Pirovano M, Boveri E, Veronese S. Acta Oncol 55 1373-1375 (2016)
  122. SWAAT Bioinformatics Workflow for Protein Structure-Based Annotation of ADME Gene Variants. Othman H, Jemimah S, da Rocha JEB. J Pers Med 12 263 (2022)
  123. Structural and functional analysis of somatic coding and UTR indels in breast and lung cancer genomes. Chen J, Guo JT. Sci Rep 11 21178 (2021)
  124. Arsenic trioxide extends survival of Li-Fraumeni syndrome mimicking mouse. Li J, Xiao S, Shi F, Song H, Wu J, Zheng D, Chen X, Tan K, Lu M. Cell Death Dis 14 783 (2023)
  125. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. Solares MJ, Kelly DF. Int J Mol Sci 23 15267 (2022)
  126. Deep Molecular and In Silico Protein Analysis of p53 Alteration in Myelodysplastic Neoplasia and Acute Myeloid Leukemia. Madarász K, Mótyán JA, Bedekovics J, Miltényi Z, Ujfalusi A, Méhes G, Mokánszki A. Cells 11 3475 (2022)
  127. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Osterburg C, Ferniani M, Antonini D, Frombach AS, D'Auria L, Osterburg S, Lotz R, Löhr F, Kehrloesser S, Zhou H, Missero C, Dötsch V. Cell Death Dis 14 274 (2023)
  128. Nanomolar Protein Thermal Profiling with Modified Cyanine Dyes. Malakoutikhah M, Mahran R, Gooran N, Masoumi A, Lundell K, Liljeblad A, Guiley K, Dai S, Zheng Q, Zhu L, Shokat KM, Kopra K, Härmä H. Anal Chem 95 18344-18351 (2023)
  129. OPUS-Mut: Studying the Effect of Protein Mutation through Side-Chain Modeling. Xu G, Wang Q, Ma J. J Chem Theory Comput 19 1629-1640 (2023)
  130. Raf/MEK/ERK Signaling Pathway Is Involved in the Inhibition of Glioma Cell Proliferation and Invasion in the Ketogenic Microenvironment. Fan WT, Liu XF, Liang RC. Curr Med Sci 43 759-767 (2023)
  131. Simulated pathogenic conformational switch regions matched well with the biochemical findings. Liu X, Zhao YP. J Biomed Inform 43 365-375 (2010)
  132. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form. Sengupta S, Singh N, Paul A, Datta D, Chatterjee D, Mukherjee S, Gadhe L, Devi J, Mahesh Y, Jolly MK, Maji SK. J Cell Sci 136 jcs261017 (2023)


Related citations provided by authors (2)

  1. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations.. Joerger AC, Allen MD, Fersht AR J Biol Chem 279 1291-6 (2004)
  2. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.. Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR J Biol Chem 280 16030-7 (2005)