2cti Citations

Determination of the complete three-dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nuclear magnetic resonance and a combination of distance geometry and dynamical simulated annealing.

J Mol Biol 210 635-48 (1989)
Cited: 65 times
EuropePMC logo PMID: 2614837

Abstract

The complete three-dimensional structure of the trypsin inhibitor from seeds of the squash Cucurbita maxima in aqueous solution was determined on the basis of 324 interproton distance constraints, 80 non-nuclear Overhauser effect distances, and 22 hydrogen-bonding constraints, supplemented by 27 phi backbone angle constraints derived from nuclear magnetic resonance measurements. The nuclear magnetic resonance input data were converted to the distance constraints in a semiquantitative manner after a sequence specific assignment of 1H spectra was obtained using two-dimensional nuclear magnetic resonance techniques. Stereospecific assignments were obtained for 17 of the 48 prochiral centers of the squash trypsin inhibitor using the floating chirality assignment introduced at the dynamical simulated annealing stage of the calculations. A total of 34 structures calculated by a hybrid distance geometry-dynamical simulated annealing method exhibit well-defined positions for both backbone and side-chain atoms. The average atomic root-mean-square difference between the individual structures and the minimized mean structure is 0.35(+/- 0.08) A for the backbone atoms and 0.89(+/- 0.17) A for all heavy atoms. The precision of the structure determination is discussed and correlated to the experimental input data.

Reviews citing this publication (4)

  1. Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Brünger AT, Nilges M. Q Rev Biophys 26 49-125 (1993)
  2. Cyclotides as grafting frameworks for protein engineering and drug design applications. Poth AG, Chan LY, Craik DJ. Biopolymers 100 480-491 (2013)
  3. Pea Albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. Gressent F, Da Silva P, Eyraud V, Karaki L, Royer C. Toxins (Basel) 3 1502-1517 (2011)
  4. All fifteen possible arrangements of three disulfide bridges in proteins are known. Warne NW, Laskowski M. Biochem Biophys Res Commun 172 1364-1370 (1990)

Articles citing this publication (61)

  1. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. Protein Sci 3 1833-1839 (1994)
  2. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Tam JP, Lu YA, Yang JL, Chiu KW. Proc Natl Acad Sci U S A 96 8913-8918 (1999)
  3. Structure in solution of the major cold-shock protein from Bacillus subtilis. Schnuchel A, Wiltscheck R, Czisch M, Herrler M, Willimsky G, Graumann P, Marahiel MA, Holak TA. Nature 364 169-171 (1993)
  4. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. Kalus W, Zweckstetter M, Renner C, Sanchez Y, Georgescu J, Grol M, Demuth D, Schumacher R, Dony C, Lang K, Holak TA. EMBO J 17 6558-6572 (1998)
  5. Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Weber T, Baumgartner R, Renner C, Marahiel MA, Holak TA. Structure 8 407-418 (2000)
  6. Relaxation matrix refinement of the solution structure of squash trypsin inhibitor. Nilges M, Habazettl J, Brünger AT, Holak TA. J Mol Biol 219 499-510 (1991)
  7. The pursuit of palau'amine. Köck M, Grube A, Seiple IB, Baran PS. Angew Chem Int Ed Engl 46 6586-6594 (2007)
  8. The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Fucini P, Renner C, Herberhold C, Noegel AA, Holak TA. Nat Struct Biol 4 223-230 (1997)
  9. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. Daly NL, Koltay A, Gustafson KR, Boyd MR, Casas-Finet JR, Craik DJ. J Mol Biol 285 333-345 (1999)
  10. The extracellular human melanoma inhibitory activity (MIA) protein adopts an SH3 domain-like fold. Stoll R, Renner C, Zweckstetter M, Brüggert M, Ambrosius D, Palme S, Engh RA, Golob M, Breibach I, Buettner R, Voelter W, Holak TA, Bosserhoff AK. EMBO J 20 340-349 (2001)
  11. A biomimetic strategy in the synthesis and fragmentation of cyclic protein. Tam JP, Lu YA. Protein Sci 7 1583-1592 (1998)
  12. Enantioselective total syntheses of (-)-palau'amine, (-)-axinellamines, and (-)-massadines. Seiple IB, Su S, Young IS, Nakamura A, Yamaguchi J, Jørgensen L, Rodriguez RA, O'Malley DP, Gaich T, Köck M, Baran PS. J Am Chem Soc 133 14710-14726 (2011)
  13. High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site. Grasberger BL, Clore GM, Gronenborn AM. Structure 2 669-678 (1994)
  14. Structural assignment of tetrabromostyloguanidine: does the relative configuration of the palau'amines need revision? Grube A, Köck M. Angew Chem Int Ed Engl 46 2320-2324 (2007)
  15. Structure of hisactophilin is similar to interleukin-1 beta and fibroblast growth factor. Habazettl J, Gondol D, Wiltscheck R, Otlewski J, Schleicher M, Holak TA. Nature 359 855-858 (1992)
  16. Conformation of thymosin beta 4 in water determined by NMR spectroscopy. Czisch M, Schleicher M, Hörger S, Voelter W, Holak TA. Eur J Biochem 218 335-344 (1993)
  17. Specificity of human cathepsin G. Polanowska J, Krokoszynska I, Czapinska H, Watorek W, Dadlez M, Otlewski J. Biochim Biophys Acta 1386 189-198 (1998)
  18. Conformational analysis of protein structures derived from NMR data. MacArthur MW, Thornton JM. Proteins 17 232-251 (1993)
  19. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. Qu Y, Liang S, Ding J, Liu X, Zhang R, Gu X. J Protein Chem 16 565-574 (1997)
  20. Ca2+-loaded spherulin 3a from Physarum polycephalum adopts the prototype gamma-crystallin fold in aqueous solution. Rosinke B, Renner C, Mayr EM, Jaenicke R, Holak TA. J Mol Biol 271 645-655 (1997)
  21. "Ensemble" iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of crambin. Bonvin AM, Rullmann JA, Lamerichs RM, Boelens R, Kaptein R. Proteins 15 385-400 (1993)
  22. Structure of interleukin 16 resembles a PDZ domain with an occluded peptide binding site. Mühlhahn P, Zweckstetter M, Georgescu J, Ciosto C, Renner C, Lanzendörfer M, Lang K, Ambrosius D, Baier M, Kurth R, Holak TA. Nat Struct Biol 5 682-686 (1998)
  23. Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: development of strategies and construction of models for myoglobin, lysozyme, and thymosin beta 4. Sippl MJ, Hendlich M, Lackner P. Protein Sci 1 625-640 (1992)
  24. Structure of leech derived tryptase inhibitor (LDTI-C) in solution. Mühlhahn P, Czisch M, Morenweiser R, Habermann B, Engh RA, Sommerhoff CP, Auerswald EA, Holak TA. FEBS Lett 355 290-296 (1994)
  25. Nuclear magnetic resonance solution and X-ray structures of squash trypsin inhibitor exhibit the same conformation of the proteinase binding loop. Holak TA, Bode W, Huber R, Otlewski J, Wilusz T. J Mol Biol 210 649-654 (1989)
  26. New features and enhancements in the X-PLOR computer program. Badger J, Kumar RA, Yip P, Szalma S. Proteins 35 25-33 (1999)
  27. Representing an ensemble of NMR-derived protein structures by a single structure. Sutcliffe MJ. Protein Sci 2 936-944 (1993)
  28. NMR solution structure of Apis mellifera chymotrypsin/cathepsin G inhibitor-1 (AMCI-1): structural similarity with Ascaris protease inhibitors. Cierpicki T, Bania J, Otlewski J. Protein Sci 9 976-984 (2000)
  29. Conversion of the Kunitz-type module of collagen VI into a highly active trypsin inhibitor by site-directed mutagenesis. Kohfeldt E, Göhring W, Mayer U, Zweckstetter M, Holak TA, Chu ML, Timpl R. Eur J Biochem 238 333-340 (1996)
  30. Solution structure of the calcium channel antagonist omega-conotoxin GVIA. Skalicky JJ, Metzler WJ, Ciesla DJ, Galdes A, Pardi A. Protein Sci 2 1591-1603 (1993)
  31. The (1)H-NMR solution structure of the antitryptic core peptide of Bowman-Birk inhibitor proteins: a minimal canonical loop. Brauer AB, Kelly G, Matthews SJ, Leatherbarrow RJ. J Biomol Struct Dyn 20 59-70 (2002)
  32. An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II). Nielsen KJ, Alewood D, Andrews J, Kent SB, Craik DJ. Protein Sci 3 291-302 (1994)
  33. Improved molecular dynamics simulations for the determination of peptide structures. Mierke DF, Kessler H. Biopolymers 33 1003-1017 (1993)
  34. Conformation of thymosin beta 9 in water/fluoroalcohol solution determined by NMR spectroscopy. Stoll R, Voelter W, Holak TA. Biopolymers 41 623-634 (1997)
  35. Structure and multiple conformations of the kunitz-type domain from human type VI collagen alpha3(VI) chain in solution. Zweckstetter M, Czisch M, Mayer U, Chu ML, Zinth W, Timpl R, Holak TA. Structure 4 195-209 (1996)
  36. Three-dimensional structure of echistatin and dynamics of the active site. Chen Y, Suri AK, Kominos D, Sanyal G, Naylor AM, Pitzenberger SM, Garsky VM, Levy RM, Baum J. J Biomol NMR 4 307-324 (1994)
  37. NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor. Arolas JL, D'Silva L, Popowicz GM, Aviles FX, Holak TA, Ventura S. Structure 13 1193-1202 (2005)
  38. Configurational Analysis by Residual Dipolar Coupling Driven Floating Chirality Distance Geometry Calculations. Immel S, Köck M, Reggelin M. Chemistry 24 13918-13930 (2018)
  39. NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding region mobilities of intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor (CMTI)-III of the squash family and comparison with those of counterparts of CMTI-V of the potato I family. Liu J, Gong Y, Prakash O, Wen L, Lee I, Huang JK, Krishnamoorthi R. Protein Sci 7 132-141 (1998)
  40. The solution structure of C1-T1, a two-domain proteinase inhibitor derived from a circular precursor protein from Nicotiana alata. Schirra HJ, Scanlon MJ, Lee MC, Anderson MA, Craik DJ. J Mol Biol 306 69-79 (2001)
  41. Configurational analysis of tetracyclic dimeric pyrrole-imidazole alkaloids using a floating chirality approach. Köck M, Schmidt G, Seiple IB, Baran PS. J Nat Prod 75 127-130 (2012)
  42. The application of 1H NMR chemical shift calculations to diastereotopic groups in proteins. Williamson MP, Asakura T. FEBS Lett 302 185-188 (1992)
  43. Chemical synthesis of new trypsin, chymotrypsin and elastase inhibitors by amino-acid substitutions in a trypsin inhibitor from squash seeds (CMTI III). Rolka K, Kupryszewski G, Ragnarsson U, Otlewski J, Krokoszynska I, Wilusz T. Biol Chem Hoppe Seyler 372 63-68 (1991)
  44. Crystal structure of the complex formed between bovine beta-trypsin and MCTI-A, a trypsin inhibitor of squash family, at 1.8-A resolution. Zhu Y, Huang Q, Qian M, Jia Y, Tang Y. J Protein Chem 18 505-509 (1999)
  45. Homonuclear three-dimensional NOE-NOE nuclear magnetic resonance/spectra for structure determination of proteins in solution. Habazettl J, Schleicher M, Otlewski J, Holak TA. J Mol Biol 228 156-169 (1992)
  46. 1H NMR assignments of sidechain conformations in proteins using a high-dimensional potential in the simulated annealing calculations. Habazettl J, Cieslar C, Oschkinat H, Holak TA. FEBS Lett 268 141-145 (1990)
  47. Configurational analysis by residual dipolar couplings: A critical assessment of diastereomeric differentiabilities. Immel S, Köck M, Reggelin M. Chirality 31 384-400 (2019)
  48. Electronic structure of trypsin inhibitor from squash seeds in aqueous solution. Zheng H. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62 5500-5508 (2000)
  49. Synthesis, cloning and expression in Escherichia coli of a gene coding for the Met8-->Leu CMTI I--a representative of the squash inhibitors of serine proteinases. Bolewska K, Krowarsch D, Otlewski J, Jaroszewski L, Bierzynski A. FEBS Lett 377 172-174 (1995)
  50. 1H NMR study on the conformation of bacitracin A in aqueous solution. Kobayashi N, Takenouchi T, Endo S, Munekata E. FEBS Lett 305 105-109 (1992)
  51. Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I. Zhukov I, Jaroszewski L, Bierzyński A. Protein Sci 9 273-279 (2000)
  52. Glycine-rich analogues of Cucurbita maxima trypsin inhibitor (CMTI-III) substituted by valine in position 27 display relatively low antitrypsin activity. Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbytryt T, Krokoszyńska I, Otlewski J. Biol Chem Hoppe Seyler 374 851-854 (1993)
  53. New active analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) modified in the non-contact region. Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbyryt T, Krokoszyńska I, Wilusz T. Biol Chem Hoppe Seyler 375 21-23 (1994)
  54. Configuration determination by residual dipolar couplings: accessing the full conformational space by molecular dynamics with tensorial constraints. Tzvetkova P, Sternberg U, Gloge T, Navarro-Vázquez A, Luy B. Chem Sci 10 8774-8791 (2019)
  55. The Advanced Floating Chirality Distance Geometry Approach-How Anisotropic NMR Parameters Can Support the Determination of the Relative Configuration of Natural Products. Köck M, Reggelin M, Immel S. Mar Drugs 18 (2020)
  56. Analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) with elastase inhibitory activity. Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbyryt T, Krokoszyńska I, Wilusz T. Biol Chem Hoppe Seyler 375 289-291 (1994)
  57. Effect of P(2)' site tryptophan and P(20)' site deletion of Momordica charantia trypsin inhibitor II on inhibition of proteinases. Kamei K, Sato S, Hamato N, Takano R, Ohshima K, Yamamoto R, Nishino T, Kato H, Hara S. Biochim Biophys Acta 1480 6-12 (2000)
  58. Model-Free Approach for the Configurational Analysis of Marine Natural Products. Köck M, Reggelin M, Immel S. Mar Drugs 19 (2021)
  59. Modifications outside the proteinase binding loop in Cucurbita maxima trypsin inhibitor III (CMTI-III) analogues change the binding energy with bovine beta-trypsin. Jaśkiewicz A, Lis K, Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbyryt T, Wilusz T. FEBS Lett 436 174-178 (1998)
  60. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III. Krishnamoorthi R, Nemmers S, Tobias B. FEBS Lett 304 149-152 (1992)
  61. NMR-Based Configurational Assignments of Natural Products: Gibbs Sampling and Bayesian Inference Using Floating Chirality Distance Geometry Calculations. Immel S, Köck M, Reggelin M. Mar Drugs 20 (2021)


Related citations provided by authors (1)