2clx Citations

4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects.

Abstract

In a routine screening of our small-molecule compound collection we recently identified 4-arylazo-3,5-diamino-1H-pyrazoles as a novel group of ATP antagonists with moderate potency against CDK2-cyclin E. A preliminary SAR study based on 35 analogues suggests ways in which the pharmacophore could be further optimized, for example, via substitutions in the 4-aryl ring. Enzyme kinetics studies with the lead compound and X-ray crystallography of an inhibitor-CDK2 complex demonstrated that its mode of inhibition is competitive. Functional kinase assays confirmed the selectivity toward CDKs, with a preference for CDK9-cyclin T1. The most potent inhibitor, 4-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]phenol 31b (CAN508), reduced the frequency of S-phase cells of the cancer cell line HT-29 in antiproliferation assays. Further observed cellular effects included decreased phosphorylation of the retinoblastoma protein and the C-terminal domain of RNA polymerase II, inhibition of mRNA synthesis, and induction of the tumor suppressor protein p53, all of which are consistent with inhibition of CDK9.

Articles - 2clx mentioned but not cited (6)

  1. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Bolam DN, Roberts S, Proctor MR, Turkenburg JP, Dodson EJ, Martinez-Fleites C, Yang M, Davis BG, Davies GJ, Gilbert HJ. Proc Natl Acad Sci U S A 104 5336-5341 (2007)
  2. A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. Rapp C, Kalyanaraman C, Schiffmiller A, Schoenbrun EL, Jacobson MP. J Chem Inf Model 51 2082-2089 (2011)
  3. Mapping the Azolog Space Enables the Optical Control of New Biological Targets. Morstein J, Awale M, Reymond JL, Trauner D. ACS Cent Sci 5 607-618 (2019)
  4. Structural insight into inhibitor of apoptosis proteins recognition by a potent divalent smac-mimetic. Cossu F, Milani M, Vachette P, Malvezzi F, Grassi S, Lecis D, Delia D, Drago C, Seneci P, Bolognesi M, Mastrangelo E. PLoS One 7 e49527 (2012)
  5. A cancer-derived mutation in the PSTAIRE helix of cyclin-dependent kinase 2 alters the stability of cyclin binding. Child ES, Hendrychová T, McCague K, Futreal A, Otyepka M, Mann DJ. Biochim Biophys Acta 1803 858-864 (2010)
  6. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)


Reviews citing this publication (11)

  1. Overview of CDK9 as a target in cancer research. Morales F, Giordano A. Cell Cycle 15 519-527 (2016)
  2. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Krystof V, Baumli S, Fürst R. Curr Pharm Des 18 2883-2890 (2012)
  3. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Valori CF, Brambilla L, Martorana F, Rossi D. Cell Mol Life Sci 71 287-297 (2014)
  4. Cyclin-dependent kinase inhibitors: a survey of recent patent literature. Galons H, Oumata N, Meijer L. Expert Opin Ther Pat 20 377-404 (2010)
  5. Pharmacological targeting of CDK9 in cardiac hypertrophy. Krystof V, Chamrád I, Jorda R, Kohoutek J. Med Res Rev 30 646-666 (2010)
  6. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Srivastava R, Ahn SH. Biotechnol Adv 33 856-872 (2015)
  7. Pyrazoles as potential anti-angiogenesis agents: a contemporary overview. Kasiotis KM, Tzanetou EN, Haroutounian SA. Front Chem 2 78 (2014)
  8. Amino-Pyrazoles in Medicinal Chemistry: A Review. Lusardi M, Spallarossa A, Brullo C. Int J Mol Sci 24 7834 (2023)
  9. Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. Alam MJ, Alam O, Naim MJ, Nawaz F, Manaithiya A, Imran M, Thabet HK, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Molecules 27 8708 (2022)
  10. Targeting CDK9 with selective inhibitors or degraders in tumor therapy: an overview of recent developments. Xiao L, Liu Y, Chen H, Shen L. Cancer Biol Ther 24 2219470 (2023)
  11. Targeting cyclin-dependent kinase 9 in cancer therapy. Shen YL, Wang YM, Zhang YX, Ma SJ, Yang LH, Zhao CG, Huang XY. Acta Pharmacol Sin 43 1633-1645 (2022)

Articles citing this publication (36)

  1. RelA Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection. Brasier AR, Tian B, Jamaluddin M, Kalita MK, Garofalo RP, Lu M. J Virol 85 11752-11769 (2011)
  2. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. J Med Chem 59 8667-8684 (2016)
  3. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells. Tian B, Zhao Y, Kalita M, Edeh CB, Paessler S, Casola A, Teng MN, Garofalo RP, Brasier AR. J Virol 87 7075-7092 (2013)
  4. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Koledova Z, Kafkova LR, Calabkova L, Krystof V, Dolezel P, Divoky V. Stem Cells Dev 19 181-194 (2010)
  5. Coordinate activities of BRD4 and CDK9 in the transcriptional elongation complex are required for TGFβ-induced Nox4 expression and myofibroblast transdifferentiation. Ijaz T, Jamaluddin M, Zhao Y, Zhang Y, Jay J, Finnerty CC, Herndon DN, Tilton RG, Brasier AR. Cell Death Dis 8 e2606 (2017)
  6. Cyclin dependent kinase-9 mediated transcriptional de-regulation of cMYC as a critical determinant of endocrine-therapy resistance in breast cancers. Sengupta S, Biarnes MC, Jordan VC. Breast Cancer Res Treat 143 113-124 (2014)
  7. Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity. Hole AJ, Baumli S, Shao H, Shi S, Huang S, Pepper C, Fischer PM, Wang S, Endicott JA, Noble ME. J Med Chem 56 660-670 (2013)
  8. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508. Baumli S, Hole AJ, Noble ME, Endicott JA. ACS Chem Biol 7 811-816 (2012)
  9. Adenovirus L-E1A activates transcription through mediator complex-dependent recruitment of the super elongation complex. Vijayalingam S, Chinnadurai G. J Virol 87 3425-3434 (2013)
  10. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases. Yang J, Zhao Y, Kalita M, Li X, Jamaluddin M, Tian B, Edeh CB, Wiktorowicz JE, Kudlicki A, Brasier AR. Mol Cell Proteomics 14 2701-2721 (2015)
  11. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Oncotarget 9 5216-5232 (2018)
  12. Outcome of treatment of human HeLa cervical cancer cells with roscovitine strongly depends on the dosage and cell cycle status prior to the treatment. Wesierska-Gadek J, Borza A, Walzi E, Krystof V, Maurer M, Komina O, Wandl S. J Cell Biochem 106 937-955 (2009)
  13. Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T. NPJ Biofilms Microbiomes 7 59 (2021)
  14. A combinatorial in silico and cellular approach to identify a new class of compounds that target VEGFR2 receptor tyrosine kinase activity and angiogenesis. Kankanala J, Latham AM, Johnson AP, Homer-Vanniasinkam S, Fishwick CW, Ponnambalam S. Br J Pharmacol 166 737-748 (2012)
  15. Antitumor effects of cyclin dependent kinase 9 inhibition in esophageal adenocarcinoma. Tong Z, Chatterjee D, Deng D, Veeranki O, Mejia A, Ajani JA, Hofstetter W, Lin S, Guha S, Kopetz S, Krishnan S, Maru D. Oncotarget 8 28696-28710 (2017)
  16. Synthesis, In Vitro Antimicrobial and Cytotoxic Activities of Some New Pyrazolo[1,5-a]pyrimidine Derivatives. Fouda AM, Abbas HS, Ahmed EH, Shati AA, Alfaifi MY, Elbehairi SEI. Molecules 24 E1080 (2019)
  17. A Dual Inhibitor of Cdc7/Cdk9 Potently Suppresses T Cell Activation. Chen EW, Tay NQ, Brzostek J, Gascoigne NRJ, Rybakin V. Front Immunol 10 1718 (2019)
  18. A facile synthesis of new monoazo disperse dyes derived from 4-hydroxyphenylazopyrazole-5-amines: evaluation of microwave assisted dyeing behavior. Al-Etaibi AM, El-Apasery MA, Ibrahim MR, Al-Awadi NA. Molecules 17 13891-13909 (2012)
  19. Novel thiosemicarbazides induced apoptosis in human MCF-7 breast cancer cells via JNK signaling. Malki A, Elbayaa RY, Ashour HM, Loffredo CA, Youssef AM. J Enzyme Inhib Med Chem 30 786-795 (2015)
  20. Arylazopyrazole AAP1742 inhibits CDKs and induces apoptosis in multiple myeloma cells via Mcl-1 downregulation. Jorda R, Navrátilová J, Hušková Z, Schütznerová E, Cankař P, Strnad M, Kryštof V. Chem Biol Drug Des 84 402-408 (2014)
  21. Novel imatinib derivatives with altered specificity between Bcr-Abl and FMS, KIT, and PDGF receptors. Skobridis K, Kinigopoulou M, Theodorou V, Giannousi E, Russell A, Chauhan R, Sala R, Brownlow N, Kiriakidis S, Domin J, Tzakos AG, Dibb NJ. ChemMedChem 5 130-139 (2010)
  22. Novel pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety: design, synthesis, molecular docking, and biological evaluation as potential multi-target cytotoxic agents. Shawky AM, Ibrahim NA, Abdalla AN, Abourehab MAS, Gouda AM. J Enzyme Inhib Med Chem 36 1313-1333 (2021)
  23. Microwave-assisted preparation of 4-amino-3-cyano-5-methoxycarbonyl-N-arylpyrazoles as building blocks for the diversity-oriented synthesis of pyrazole-based polycyclic scaffolds. Le Corre L, Tak-Tak L, Guillard A, Prestat G, Gravier-Pelletier C, Busca P. Org Biomol Chem 13 409-423 (2015)
  24. In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction. Randjelovic J, Eric S, Savic V. J Mol Graph Model 50 100-112 (2014)
  25. Discovery of nitroaryl urea derivatives with antiproliferative properties. Wróbel TM, Kiełbus M, Kaczor AA, Kryštof V, Karczmarzyk Z, Wysocki W, Fruziński A, Król SK, Grabarska A, Stepulak A, Matosiuk D. J Enzyme Inhib Med Chem 31 608-618 (2016)
  26. Generation and validation of the first predictive pharmacophore model for cyclin-dependent kinase 9 inhibitors. Fang C, Xiao Z, Guo Z. J Mol Graph Model 29 800-808 (2011)
  27. Novel arylazopyrazole inhibitors of cyclin-dependent kinases. Jorda R, Schütznerová E, Cankař P, Brychtová V, Navrátilová J, Kryštof V. Bioorg Med Chem 23 1975-1981 (2015)
  28. Synthesis of 4-substituted pyrazole-3,5-diamines via Suzuki-Miyaura coupling and iron-catalyzed reduction. Tomanová M, Jedinák L, Košař J, Kvapil L, Hradil P, Cankař P. Org Biomol Chem 15 10200-10211 (2017)
  29. Identification of novel inhibitors against Cyclin Dependent Kinase 9/Cyclin T1 complex as: Anti cancer agent. Hussain A, Verma CK, Chouhan U. Saudi J Biol Sci 24 1229-1242 (2017)
  30. Natural Protein Kinase Inhibitors, Staurosporine, and Chelerythrine Suppress Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. Chakraborty M, Rabby SMF, Gupta DR, Rahman M, Paul SK, Mahmud NU, Rahat AAM, Jankuloski L, Islam T. Microorganisms 10 1186 (2022)
  31. One-pot syntheses of novel pyrazole-containing bisphosphonate esters at room temperature. Xiang H, Qi X, Xie Y, Xu G, Yang C. Org Biomol Chem 10 7730-7738 (2012)
  32. SAR study of 4-arylazo-3,5-diamino-1H-pyrazoles: identification of small molecules that induce dispersal of Pseudomonas aeruginosa biofilms. Jansen CU, Uhd J, Andersen JB, Hultqvist LD, Jakobsen TH, Nilsson M, Nielsen TE, Givskov M, Tolker-Nielsen T, Qvortrup KM. RSC Med Chem 12 1868-1878 (2021)
  33. Letter ¹³C and ¹H NMR study of azo coupling products from diazonium salts and furan-2-(3H)-ones. Mayorova OA, Yegorova AY. Magn Reson Chem 53 853-856 (2015)
  34. Imidazo[1,2-c]pyrimidin-5(6H)-one as a novel core of cyclin-dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring. Ajani H, Jansa J, Köprülüoğlu C, Hobza P, Kryštof V, Lyčka A, Lepsik M. J Mol Recognit 31 e2720 (2018)
  35. Modification of Boc-Protected CAN508 via Acylation and Suzuki-Miyaura Coupling. Pisár M, Schütznerová E, Hančík F, Popa I, Trávníček Z, Cankař P. Molecules 23 E149 (2018)
  36. Structural Bioinformatics Approach of Cyclin-Dependent Kinases 1 and 3 Complexed with Inhibitors. Saraiva LA, Veloso MP, Camps I, da Silveira NJ. Mol Inform 30 219-231 (2011)