2byb Citations

Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B.

Proc Natl Acad Sci U S A 102 12684-9 (2005)
Related entries: 2bxr, 2bxs

Cited: 196 times
EuropePMC logo PMID: 16129825

Abstract

The three-dimensional structure of recombinant human monoamine oxidase A (hMAO A) as its clorgyline-inhibited adduct is described. Although the chain-fold of hMAO A is similar to that of rat MAO A and human MAO B (hMAO B), hMAO A is unique in that it crystallizes as a monomer and exhibits the solution hydrodynamic behavior of a monomeric form rather than the dimeric form of hMAO B and rat MAO A. hMAO A's active site consists of a single hydrophobic cavity of approximately 550 A3, which is smaller than that determined from the structure of deprenyl-inhibited hMAO B (approximately 700 A3) but larger than that of rat MAO A (approximately 450 A3). An important component of the active site structure of hMAO A is the loop conformation of residues 210-216, which differs from that of hMAO B and rat MAO A. The origin of this structural alteration is suggested to result from long-range interactions in the monomeric form of the enzyme. In addition to serving as a basis for the development of hMAO A specific inhibitors, these data support the proposal that hMAO A involves a change from the dimeric to the monomeric form through a Glu-151 --> Lys mutation that is specific of hMAO A [Andrès, A. M., Soldevila, M., Navarro, A., Kidd, K. K., Oliva, B. & Bertranpetit, J. (2004) Hum. Genet. 115, 377-386]. These considerations put into question the use of MAO A from nonhuman sources in drug development for use in humans.

Reviews - 2byb mentioned but not cited (7)

  1. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Ramsay RR, Majekova M, Medina M, Valoti M. Front Neurosci 10 375 (2016)
  2. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. Hong R, Li X. Medchemcomm 10 10-25 (2019)
  3. Recent Developments in New Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches. Cruz-Vicente P, Passarinha LA, Silvestre S, Gallardo E. Molecules 26 2193 (2021)
  4. Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Chen X, Liu S, Fang J, Zheng S, Wang Z, Jiao Y, Xia P, Wu H, Ma Z, Hao L. Toxins (Basel) 14 722 (2022)
  5. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. J Enzyme Inhib Med Chem 38 2270781 (2023)
  6. Pyrazoline Containing Compounds as Therapeutic Targets for Neurodegenerative Disorders. Ahsan MJ, Ali A, Ali A, Thiriveedhi A, Bakht MA, Yusuf M, Salahuddin, Afzal O, Altamimi ASA. ACS Omega 7 38207-38245 (2022)
  7. Structure-Based Design of Novel MAO-B Inhibitors: A Review. Mateev E, Georgieva M, Mateeva A, Zlatkov A, Ahmad S, Raza K, Azevedo V, Barh D. Molecules 28 4814 (2023)

Articles - 2byb mentioned but not cited (15)

  1. A perspective on multi-target drug discovery and design for complex diseases. Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. Clin Transl Med 7 3 (2018)
  2. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Proc Natl Acad Sci U S A 102 12684-12689 (2005)
  3. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Ramírez D, Caballero J. Molecules 23 E1038 (2018)
  4. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer's disease. Park JH, Ju YH, Choi JW, Song HJ, Jang BK, Woo J, Chun H, Kim HJ, Shin SJ, Yarishkin O, Jo S, Park M, Yeon SK, Kim S, Kim J, Nam MH, Londhe AM, Kim J, Cho SJ, Cho S, Lee C, Hwang SY, Kim SW, Oh SJ, Cho J, Pae AN, Lee CJ, Park KD. Sci Adv 5 eaav0316 (2019)
  5. Monoamine Oxidase Inhibitory Activity of Novel Pyrazoline Analogues: Curcumin Based Design and Synthesis. Badavath VN, Baysal İ, Ucar G, Sinha BN, Jayaprakash V. ACS Med Chem Lett 7 56-61 (2016)
  6. Probing Multi-Target Action of Phlorotannins as New Monoamine Oxidase Inhibitors and Dopaminergic Receptor Modulators with the Potential for Treatment of Neuronal Disorders. Seong SH, Paudel P, Choi JW, Ahn DH, Nam TJ, Jung HA, Choi JS. Mar Drugs 17 E377 (2019)
  7. In Silico Studies Revealed Multiple Neurological Targets for the Antidepressant Molecule Ursolic Acid. Singla RK, Scotti L, Dubey AK. Curr Neuropharmacol 15 1100-1106 (2017)
  8. Interactions of endocannabinoid virodhamine and related analogs with human monoamine oxidase-A and -B. Pandey P, Chaurasiya ND, Tekwani BL, Doerksen RJ. Biochem Pharmacol 155 82-91 (2018)
  9. Novel Diels-Alder Type Adducts from Morus alba Root Bark Targeting Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases. Paudel P, Park SE, Seong SH, Jung HA, Choi JS. Int J Mol Sci 20 E6232 (2019)
  10. Parameters for Irreversible Inactivation of Monoamine Oxidase. Ramsay RR, Basile L, Maniquet A, Hagenow S, Pappalardo M, Saija MC, Bryant SD, Albreht A, Guccione S. Molecules 25 E5908 (2020)
  11. Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. I Jevtić I, Lai TH, Z Penjišević J, Dukić-Stefanović S, B Andrić D, Brust P, Kostić-Rajačić SV, Teodoro R. Molecules 25 E4941 (2020)
  12. Monoamine Oxidase Inhibition by Major Tanshinones from Salvia miltiorrhiza and Selective Muscarinic Acetylcholine M4 Receptor Antagonism by Tanshinone I. Prajapati R, Park SE, Seong SH, Paudel P, Fauzi FM, Jung HA, Choi JS. Biomolecules 11 1001 (2021)
  13. 4-Phenethyl-1-Propargylpiperidine-Derived Dual Inhibitors of Butyrylcholinesterase and Monoamine Oxidase B. Mazej T, Knez D, Meden A, Gobec S, Sova M. Molecules 26 4118 (2021)
  14. Design, synthesis, molecular modelling and in vitro screening of monoamine oxidase inhibitory activities of novel quinazolyl hydrazine derivatives. Amer A, Hegazi AH, Alshekh MK, Ahmed HEA, Soliman SM, Maniquet A, Ramsay RR. R Soc Open Sci 7 200050 (2020)
  15. In Vitro Human Monoamine Oxidase Inhibition and Human Dopamine D4 Receptor Antagonist Effect of Natural Flavonoids for Neuroprotection. Paudel P, Choi JS, Prajapati R, Seong SH, Park SE, Kang WC, Ryu JH, Jung HA. Int J Mol Sci 24 15859 (2023)


Reviews citing this publication (41)

  1. The therapeutic potential of monoamine oxidase inhibitors. Youdim MB, Edmondson D, Tipton KF. Nat Rev Neurosci 7 295-309 (2006)
  2. Overcoming the challenges of membrane protein crystallography. Carpenter EP, Beis K, Cameron AD, Iwata S. Curr Opin Struct Biol 18 581-586 (2008)
  3. Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A. Biochemistry 48 4220-4230 (2009)
  4. Disulfides as redox switches: from molecular mechanisms to functional significance. Wouters MA, Fan SW, Haworth NL. Antioxid Redox Signal 12 53-91 (2010)
  5. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Finberg JP, Rabey JM. Front Pharmacol 7 340 (2016)
  6. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Kaludercic N, Di Lisa F. Front Cardiovasc Med 7 12 (2020)
  7. Oxidation of amines by flavoproteins. Fitzpatrick PF. Arch Biochem Biophys 493 13-25 (2010)
  8. Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Edmondson DE, Binda C, Mattevi A. Arch Biochem Biophys 464 269-276 (2007)
  9. Fluorogenic probes for disease-relevant enzymes. Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Chem Soc Rev 48 683-722 (2019)
  10. Pichia pastoris as an expression host for membrane protein structural biology. Byrne B. Curr Opin Struct Biol 32 9-17 (2015)
  11. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Bortolato M, Shih JC. Int Rev Neurobiol 100 13-42 (2011)
  12. Mitochondria and vascular pathology. Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Pharmacol Rep 61 123-130 (2009)
  13. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer's disease. Patil PO, Bari SB, Firke SD, Deshmukh PK, Donda ST, Patil DA. Bioorg Med Chem 21 2434-2450 (2013)
  14. Selective MAO-B inhibitors: a lesson from natural products. Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Mol Divers 18 219-243 (2014)
  15. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MB, Tipton KF, Marco-Contelles J. Front Neurosci 10 205 (2016)
  16. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. Forneris F, Battaglioli E, Mattevi A, Binda C. FEBS J 276 4304-4312 (2009)
  17. Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors. Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG. Molecules 26 3724 (2021)
  18. New frontiers in structural flavoenzymology. De Colibus L, Mattevi A. Curr Opin Struct Biol 16 722-728 (2006)
  19. Mitochondrial production of reactive oxygen species. Grivennikova VG, Vinogradov AD. Biochemistry (Mosc) 78 1490-1511 (2013)
  20. Kinetics, mechanism, and inhibition of monoamine oxidase. Ramsay RR, Albreht A. J Neural Transm (Vienna) 125 1659-1683 (2018)
  21. Monoamine oxidases in development. Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Cell Mol Life Sci 70 599-630 (2013)
  22. Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson's disease? Youdim MB, Geldenhuys WJ, Van der Schyf CJ. Parkinsonism Relat Disord 13 Suppl 3 S281-91 (2007)
  23. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes. Vianello R, Domene C, Mavri J. Front Neurosci 10 327 (2016)
  24. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Kolla NJ, Bortolato M. Prog Neurobiol 194 101875 (2020)
  25. An overview of phenylcyclopropylamine derivatives: biochemical and biological significance and recent developments. Khan MN, Suzuki T, Miyata N. Med Res Rev 33 873-910 (2013)
  26. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Front Neurosci 16 807435 (2022)
  27. Teaching an Old Molecule New Tricks: Drug Repositioning for Duchenne Muscular Dystrophy. Vitiello L, Tibaudo L, Pegoraro E, Bello L, Canton M. Int J Mol Sci 20 E6053 (2019)
  28. Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. Yraola F, Zorzano A, Albericio F, Royo M. ChemMedChem 4 495-503 (2009)
  29. Monoamine oxidase A and B substrates: probing the pathway for drug development. Chajkowski-Scarry S, Rimoldi JM. Future Med Chem 6 697-717 (2014)
  30. Overexpression of membrane proteins from higher eukaryotes in yeasts. Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Appl Microbiol Biotechnol 98 7671-7698 (2014)
  31. Predicting monoamine oxidase inhibitory activity through ligand-based models. Vilar S, Ferino G, Quezada E, Santana L, Friedman C. Curr Top Med Chem 12 2258-2274 (2012)
  32. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Molecules 26 6019 (2021)
  33. The structure of monoamine oxidases: past, present, and future. Iacovino LG, Magnani F, Binda C. J Neural Transm (Vienna) 125 1567-1579 (2018)
  34. Amphetamine Derivatives as Monoamine Oxidase Inhibitors. Reyes-Parada M, Iturriaga-Vasquez P, Cassels BK. Front Pharmacol 10 1590 (2019)
  35. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Duarte P, Cuadrado A, León R. Handb Exp Pharmacol 264 229-259 (2021)
  36. Natural Products Inhibitors of Monoamine Oxidases-Potential New Drug Leads for Neuroprotection, Neurological Disorders, and Neuroblastoma. Chaurasiya ND, Leon F, Muhammad I, Tekwani BL. Molecules 27 4297 (2022)
  37. A twenty-year journey exploring coumarin-based derivatives as bioactive molecules. Pisani L, Catto M, Muncipinto G, Nicolotti O, Carrieri A, Rullo M, Stefanachi A, Leonetti F, Altomare C. Front Chem 10 1002547 (2022)
  38. Recent advances in reaction-based fluorescent probes for detecting monoamine oxidases in living systems. Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, Luo J, Ge J, Zhu Q. Analyst 144 3703-3709 (2019)
  39. Towards an understanding of oleate hydratases and their application in industrial processes. Prem S, Helmer CPO, Dimos N, Himpich S, Brück T, Garbe D, Loll B. Microb Cell Fact 21 58 (2022)
  40. Structure-Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. Shi R, Wu Q, Xin C, Yu H, Lim KL, Li X, Shi Z, Zhang CW, Qian L, Li L, Huang W. Chembiochem 20 1487-1497 (2019)
  41. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Biosensors (Basel) 13 838 (2023)

Articles citing this publication (133)

  1. Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T. Proc Natl Acad Sci U S A 105 5739-5744 (2008)
  2. Structures and Mechanism of the Monoamine Oxidase Family. Gaweska H, Fitzpatrick PF. Biomol Concepts 2 365-377 (2011)
  3. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Scott AL, Bortolato M, Chen K, Shih JC. Neuroreport 19 739-743 (2008)
  4. Built-in loops allow versatility in domain-domain interactions: lessons from self-interacting domains. Akiva E, Itzhaki Z, Margalit H. Proc Natl Acad Sci U S A 105 13292-13297 (2008)
  5. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models. Li L, Zhang CW, Chen GY, Zhu B, Chai C, Xu QH, Tan EK, Zhu Q, Lim KL, Yao SQ. Nat Commun 5 3276 (2014)
  6. Potentiation of ligand binding through cooperative effects in monoamine oxidase B. Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A. J Biol Chem 285 36849-36856 (2010)
  7. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. Matos MJ, Terán C, Pérez-Castillo Y, Uriarte E, Santana L, Viña D. J Med Chem 54 7127-7137 (2011)
  8. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L. Eur J Neurosci 24 3532-3540 (2006)
  9. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target? Ramírez D, Caballero J. Int J Mol Sci 17 E525 (2016)
  10. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Matos MJ, Viña D, Quezada E, Picciau C, Delogu G, Orallo F, Santana L, Uriarte E. Bioorg Med Chem Lett 19 3268-3270 (2009)
  11. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Matos MJ, Viña D, Picciau C, Orallo F, Santana L, Uriarte E. Bioorg Med Chem Lett 19 5053-5055 (2009)
  12. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease. Naoi M, Maruyama W. Expert Rev Neurother 9 1233-1250 (2009)
  13. New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. Gökhan-Kelekçi N, Koyunoğlu S, Yabanoğlu S, Yelekçi K, Ozgen O, Uçar G, Erol K, Kendi E, Yeşilada A. Bioorg Med Chem 17 675-689 (2009)
  14. Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R. Angew Chem Int Ed Engl 51 7035-7040 (2012)
  15. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT. Front Mol Neurosci 12 143 (2019)
  16. Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. Chimenti F, Carradori S, Secci D, Bolasco A, Bizzarri B, Chimenti P, Granese A, Yáñez M, Orallo F. Eur J Med Chem 45 800-804 (2010)
  17. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution. Atkin KE, Reiss R, Koehler V, Bailey KR, Hart S, Turkenburg JP, Turner NJ, Brzozowski AM, Grogan G. J Mol Biol 384 1218-1231 (2008)
  18. Towards development of selective and reversible pyrazoline based MAO-inhibitors: Synthesis, biological evaluation and docking studies. Sahoo A, Yabanoglu S, Sinha BN, Ucar G, Basu A, Jayaprakash V. Bioorg Med Chem Lett 20 132-136 (2010)
  19. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Larit F, Elokely KM, Chaurasiya ND, Benyahia S, Nael MA, León F, Abu-Darwish MS, Efferth T, Efferth T, Wang YH, Belouahem-Abed D, Benayache S, Tekwani BL, Cutler SJ. Phytomedicine 40 27-36 (2018)
  20. Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans. Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD. J Mol Biol 396 785-799 (2010)
  21. The aromatic cage in the active site of monoamine oxidase B: effect on the structural and electronic properties of bound benzylamine and p-nitrobenzylamine. Akyüz MA, Erdem SS, Edmondson DE. J Neural Transm (Vienna) 114 693-698 (2007)
  22. Hydroxycoumarins as selective MAO-B inhibitors. Serra S, Ferino G, Matos MJ, Vázquez-Rodríguez S, Delogu G, Viña D, Cadoni E, Santana L, Uriarte E. Bioorg Med Chem Lett 22 258-261 (2012)
  23. Lipophilicity plays a major role in modulating the inhibition of monoamine oxidase B by 7-substituted coumarins. Carotti A, Altomare C, Catto M, Gnerre C, Summo L, De Marco A, Rose S, Jenner P, Testa B. Chem Biodivers 3 134-149 (2006)
  24. Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine. Repič M, Vianello R, Purg M, Duarte F, Bauer P, Kamerlin SC, Mavri J. Proteins 82 3347-3355 (2014)
  25. Interactions of monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human monoamine oxidase B complex. Binda C, Aldeco M, Mattevi A, Edmondson DE. J Med Chem 54 909-912 (2011)
  26. 8-Substituted 3-arylcoumarins as potent and selective MAO-B inhibitors: synthesis, pharmacological evaluation, and docking studies. Viña D, Matos MJ, Ferino G, Cadoni E, Laguna R, Borges F, Uriarte E, Santana L. ChemMedChem 7 464-470 (2012)
  27. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations. Akyüz MA, Erdem SS. J Neural Transm (Vienna) 120 937-945 (2013)
  28. Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Qiu J, Ma Y, Zhang J, Wen Y, Liu W. Appl Environ Microbiol 79 2164-2171 (2013)
  29. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Esteban G, Allan J, Samadi A, Mattevi A, Unzeta M, Marco-Contelles J, Binda C, Ramsay RR. Biochim Biophys Acta 1844 1104-1110 (2014)
  30. Synthesis, semipreparative HPLC separation, biological evaluation, and 3D-QSAR of hydrazothiazole derivatives as human monoamine oxidase B inhibitors. Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Maccioni E, Cardia MC, Yáñez M, Orallo F, Alcaro S, Ortuso F, Cirilli R, Ferretti R, Distinto S, Kirchmair J, Langer T. Bioorg Med Chem 18 5063-5070 (2010)
  31. Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family. Kachalova G, Decker K, Holt A, Bartunik HD. Proc Natl Acad Sci U S A 108 4800-4805 (2011)
  32. Design of chemical shift-switching 19F magnetic resonance imaging probe for specific detection of human monoamine oxidase A. Yamaguchi K, Ueki R, Nonaka H, Sugihara F, Matsuda T, Sando S. J Am Chem Soc 133 14208-14211 (2011)
  33. Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. van Hellemond EW, van Dijk M, Heuts DP, Janssen DB, Fraaije MW. Appl Microbiol Biotechnol 78 455-463 (2008)
  34. MAO enzymes inhibitory activity of new benzimidazole derivatives including hydrazone and propargyl side chains. Can ÖD, Osmaniye D, Demir Özkay Ü, Sağlık BN, Levent S, Ilgın S, Baysal M, Özkay Y, Kaplancıklı ZA. Eur J Med Chem 131 92-106 (2017)
  35. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A(2A) Receptors for the Treatment of Parkinson's Disease. Azam F, Madi AM, Ali HI. J Young Pharm 4 184-192 (2012)
  36. What a Difference a Methyl Group Makes: The Selectivity of Monoamine Oxidase B Towards Histamine and N-Methylhistamine. Maršavelski A, Vianello R. Chemistry 23 2915-2925 (2017)
  37. ²H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase A: comparisons with the human enzyme. Wang J, Edmondson DE. Biochemistry 50 7710-7717 (2011)
  38. Discovery of 3-Hydroxy-3-phenacyloxindole Analogues of Isatin as Potential Monoamine Oxidase Inhibitors. Tripathi RK, Krishnamurthy S, Ayyannan SR. ChemMedChem 11 119-132 (2016)
  39. Identification of Indole-Based Chalcones: Discovery of a Potent, Selective, and Reversible Class of MAO-B Inhibitors. Sasidharan R, Manju SL, Uçar G, Baysal I, Mathew B. Arch Pharm (Weinheim) 349 627-637 (2016)
  40. Proposed structural basis of interaction of piperine and related compounds with monoamine oxidases. Rahman T, Rahmatullah M. Bioorg Med Chem Lett 20 537-540 (2010)
  41. Pyrazoline-based mycobactin analogues as MAO-inhibitors. Jayaprakash V, Sinha BN, Ucar G, Ercan A. Bioorg Med Chem Lett 18 6362-6368 (2008)
  42. Design, synthesis, in vitro MAO-B inhibitory evaluation, and computational studies of some 6-nitrobenzothiazole-derived semicarbazones. Tripathi RK, Goshain O, Ayyannan SR. ChemMedChem 8 462-474 (2013)
  43. Naphthylisopropylamine and N-benzylamphetamine derivatives as monoamine oxidase inhibitors. Vilches-Herrera M, Miranda-Sepúlveda J, Rebolledo-Fuentes M, Fierro A, Lühr S, Iturriaga-Vasquez P, Cassels BK, Reyes-Parada M. Bioorg Med Chem 17 2452-2460 (2009)
  44. Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors. Gökhan-Kelekçi N, Simşek OO, Ercan A, Yelekçi K, Sahin ZS, Işik S, Uçar G, Bilgin AA. Bioorg Med Chem 17 6761-6772 (2009)
  45. Topological probes of monoamine oxidases A and B in rat liver mitochondria: inhibition by TEMPO-substituted pargyline analogues and inactivation by proteolysis. Wang J, Edmondson DE. Biochemistry 50 2499-2505 (2011)
  46. cis-Cyclopropylamines as mechanism-based inhibitors of monoamine oxidases. Malcomson T, Yelekci K, Borrello MT, Ganesan A, Semina E, De Kimpe N, Mangelinckx S, Ramsay RR. FEBS J 282 3190-3198 (2015)
  47. Docking of novel reversible monoamine oxidase-B inhibitors: efficient prediction of ligand binding sites and estimation of inhibitors thermodynamic properties. Yelekçi K, Karahan O, Toprakçi M. J Neural Transm (Vienna) 114 725-732 (2007)
  48. Monoamine Oxidase Inhibitory Activity: Methyl- versus Chlorochalcone Derivatives. Mathew B, Uçar G, Mathew GE, Mathew S, Kalatharakkal Purapurath P, Moolayil F, Mohan S, Varghese Gupta S. ChemMedChem 11 2649-2655 (2016)
  49. New insights into the structures and functions of human monoamine oxidases A and B. Edmondson DE, DeColibus L, Binda C, Li M, Mattevi A. J Neural Transm (Vienna) 114 703-705 (2007)
  50. Synthesis and inhibitory effect of piperine derivates on monoamine oxidase. Mu LH, Wang B, Ren HY, Liu P, Guo DH, Wang FM, Bai L, Guo YS. Bioorg Med Chem Lett 22 3343-3348 (2012)
  51. Synthesis of some novel hydrazone and 2-pyrazoline derivatives: monoamine oxidase inhibitory activities and docking studies. Evranos-Aksöz B, Yabanoğlu-Çiftçi S, Uçar G, Yelekçi K, Ertan R. Bioorg Med Chem Lett 24 3278-3284 (2014)
  52. Synthesis, Biochemistry, and Computational Studies of Brominated Thienyl Chalcones: A New Class of Reversible MAO-B Inhibitors. Mathew B, Haridas A, Uçar G, Baysal I, Joy M, Mathew GE, Lakshmanan B, Jayaprakash V. ChemMedChem 11 1161-1171 (2016)
  53. Synthesis, molecular modeling studies and selective inhibitory activity against MAO of N1-propanoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Chimenti F, Fioravanti R, Bolasco A, Manna F, Chimenti P, Secci D, Rossi F, Turini P, Ortuso F, Alcaro S, Cardia MC. Eur J Med Chem 43 2262-2267 (2008)
  54. 2-Arylthiomorpholine derivatives as potent and selective monoamine oxidase B inhibitors. Lühr S, Vilches-Herrera M, Fierro A, Ramsay RR, Edmondson DE, Reyes-Parada M, Cassels BK, Iturriaga-Vásquez P. Bioorg Med Chem 18 1388-1395 (2010)
  55. Flavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO) Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol. Turkmenoglu FP, Baysal İ, Ciftci-Yabanoglu S, Yelekci K, Temel H, Paşa S, Ezer N, Çalış İ, Ucar G. Molecules 20 7454-7473 (2015)
  56. Searching for Multi-Targeting Neurotherapeutics against Alzheimer's: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif. Pisani L, Farina R, Soto-Otero R, Denora N, Mangiatordi GF, Nicolotti O, Mendez-Alvarez E, Altomare CD, Catto M, Carotti A. Molecules 21 362 (2016)
  57. Human and rat monoamine oxidase-A are differentially inhibited by (S)-4-alkylthioamphetamine derivatives: insights from molecular modeling studies. Fierro A, Osorio-Olivares M, Cassels BK, Edmondson DE, Sepúlveda-Boza S, Reyes-Parada M. Bioorg Med Chem 15 5198-5206 (2007)
  58. Kinetic properties of recombinant MAO-A on incorporation into phospholipid nanodisks. Cruz F, Edmondson DE. J Neural Transm (Vienna) 114 699-702 (2007)
  59. MAO inhibitory activity of 2-arylbenzofurans versus 3-arylcoumarins: synthesis, in vitro study, and docking calculations. Ferino G, Cadoni E, Matos MJ, Quezada E, Uriarte E, Santana L, Vilar S, Tatonetti NP, Yáñez M, Viña D, Picciau C, Serra S, Delogu G. ChemMedChem 8 956-966 (2013)
  60. Quantum-chemical approach to determining the high potency of clorgyline as an irreversible acetylenic monoamine oxidase inhibitor. Pavlin M, Mavri J, Repič M, Vianello R. J Neural Transm (Vienna) 120 875-882 (2013)
  61. Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. Mathew B, Baek SC, Grace Thomas Parambi D, Pil Lee J, Joy M, Annie Rilda PR, Randev RV, Nithyamol P, Vijayan V, Inasu ST, Mathew GE, Lohidakshan KK, Kumar Krishnan G, Kim H. Medchemcomm 9 1871-1881 (2018)
  62. Synthesis and molecular modelling of novel substituted-4,5-dihydro-(1H)-pyrazole derivatives as potent and highly selective monoamine oxidase-A inhibitors. Chimenti F, Bolasco A, Manna F, Secci D, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F. Chem Biol Drug Des 67 206-214 (2006)
  63. Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of N,N'-bis[2-oxo-2H-benzopyran]-3-carboxamides. Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Befani O, Turini P, Alcaro S, Ortuso F. Bioorg Med Chem Lett 16 4135-4140 (2006)
  64. Why the transdermal delivery of selegiline (6 mg/24 hr) obviates the need for a dietary restriction on tyramine. Preskorn SH. J Psychiatr Pract 12 168-172 (2006)
  65. Chromenylchalcones with inhibitory effects on monoamine oxidase B. Jo G, Ahn S, Kim BG, Park HR, Kim YH, Choo HA, Koh D, Chong Y, Ahn JH, Lim Y. Bioorg Med Chem 21 7890-7897 (2013)
  66. Computational investigation on the structure-activity relationship of the biradical mechanism for monoamine oxidase. Erdem SS, Büyükmenekşe B. J Neural Transm (Vienna) 118 1021-1029 (2011)
  67. New coumarin derivatives: design, synthesis and use as inhibitors of hMAO. He X, Chen YY, Shi JB, Tang WJ, Pan ZX, Dong ZQ, Song BA, Li J, Liu XH. Bioorg Med Chem 22 3732-3738 (2014)
  68. The Regulation of Monoamine Oxidase A Gene Expression by Distinct Variable Number Tandem Repeats. Manca M, Pessoa V, Lopez AI, Harrison PT, Miyajima F, Sharp H, Pickles A, Hill J, Murgatroyd C, Bubb VJ, Quinn JP. J Mol Neurosci 64 459-470 (2018)
  69. (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: synthesis, biological evaluation and molecular modeling studies. D'Ascenzio M, Chimenti P, Gidaro MC, De Monte C, De Vita D, Granese A, Scipione L, Di Santo R, Costa G, Alcaro S, Yáñez M, Carradori S. J Enzyme Inhib Med Chem 30 908-919 (2015)
  70. Catalytic and inhibitor binding properties of zebrafish monoamine oxidase (zMAO): comparisons with human MAO A and MAO B. Aldeco M, Arslan BK, Edmondson DE. Comp Biochem Physiol B Biochem Mol Biol 159 78-83 (2011)
  71. High-level expression and purification of rat monoamine oxidase A (MAO A) in Pichia pastoris: comparison with human MAO A. Wang J, Edmondson DE. Protein Expr Purif 70 211-217 (2010)
  72. Insight into the functional and structural properties of 3-arylcoumarin as an interesting scaffold in monoamine oxidase B inhibition. Matos MJ, Vilar S, García-Morales V, Tatonetti NP, Uriarte E, Santana L, Viña D. ChemMedChem 9 1488-1500 (2014)
  73. Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate between Monoamine Oxidase Isoforms A and B. Knez D, Colettis N, Iacovino LG, Sova M, Pišlar A, Konc J, Lešnik S, Higgs J, Kamecki F, Mangialavori I, Dolšak A, Žakelj S, Trontelj J, Kos J, Binda C, Marder M, Gobec S. J Med Chem 63 1361-1387 (2020)
  74. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats. El-Terras A, Soliman MM, Alkhedaide A, Attia HF, Alharthy A, Banaja AE. Mol Med Rep 13 3147-3154 (2016)
  75. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Murray AT, Dowley MJ, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Angew Chem Int Ed Engl 54 8997-9000 (2015)
  76. Development of spin-labeled pargyline analogues as specific inhibitors of human monoamine oxidases A and B. Upadhyay AK, Edmondson DE. Biochemistry 48 3928-3935 (2009)
  77. Do monomeric vs dimeric forms of MAO-A make a difference? A direct comparison of the catalytic properties of rat and human MAO-A's. Wang J, Edmondson DE. J Neural Transm (Vienna) 114 721-724 (2007)
  78. In Vitro and in Silico Human Monoamine Oxidase Inhibitory Potential of Anthraquinones, Naphthopyrones, and Naphthalenic Lactones from Cassia obtusifolia Linn Seeds. Paudel P, Seong SH, Shrestha S, Jung HA, Choi JS. ACS Omega 4 16139-16152 (2019)
  79. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. Kong Z, Sun D, Jiang Y, Hu Y. J Enzyme Inhib Med Chem 35 1513-1523 (2020)
  80. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation. Oanca G, Stare J, Mavri J. Proteins 85 2170-2178 (2017)
  81. Multiscale simulation of monoamine oxidase catalyzed decomposition of phenylethylamine analogs. Oanca G, Stare J, Vianello R, Mavri J. Eur J Pharmacol 817 46-50 (2017)
  82. Reversible and irreversible small molecule inhibitors of monoamine oxidase B (MAO-B) investigated by biophysical techniques. Rojas RJ, Edmondson DE, Almos T, Scott R, Massari ME. Bioorg Med Chem 23 770-778 (2015)
  83. WIDOCK: a reactive docking protocol for virtual screening of covalent inhibitors. Scarpino A, Petri L, Knez D, Imre T, Ábrányi-Balogh P, Ferenczy GG, Gobec S, Keserű GM. J Comput Aided Mol Des 35 223-244 (2021)
  84. Characterization of detergent purified recombinant rat liver monoamine oxidase B expressed in Pichia pastoris. Upadhyay AK, Edmondson DE. Protein Expr Purif 59 349-356 (2008)
  85. Design and synthesis of a MAO-B-selectively activated prodrug based on MPTP: a mitochondria-targeting chemotherapeutic agent for treatment of human malignant gliomas. Sharpe MA, Han J, Baskin AM, Baskin DS. ChemMedChem 10 621-628 (2015)
  86. Design, Synthesis, and Evaluation of Monoamine Oxidase A Inhibitors⁻Indocyanine Dyes Conjugates as Targeted Antitumor Agents. Yang XG, Mou YH, Wang YJ, Wang J, Li YY, Kong RH, Ding M, Wang D, Guo C. Molecules 24 E1400 (2019)
  87. Hydride Abstraction as the Rate-Limiting Step of the Irreversible Inhibition of Monoamine Oxidase B by Rasagiline and Selegiline: A Computational Empirical Valence Bond Study. Tandarić T, Prah A, Stare J, Mavri J, Vianello R. Int J Mol Sci 21 E6151 (2020)
  88. Monoamine oxidase (MAO) inhibitory activity: 3-phenylcoumarins versus 4-hydroxy-3-phenylcoumarins. Delogu GL, Serra S, Quezada E, Uriarte E, Vilar S, Tatonetti NP, Viña D. ChemMedChem 9 1672-1676 (2014)
  89. Synthesis of some novel 2-substituted benzothiazole derivatives containing benzylamine moiety as monoamine oxidase inhibitory agents. Kaya B, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. J Enzyme Inhib Med Chem 31 1654-1661 (2016)
  90. Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: role of Asn181 and Ile335 validated by spectroscopic and computational studies. Juárez-Jiménez J, Mendes E, Galdeano C, Martins C, Silva DB, Marco-Contelles J, do Carmo Carreiras M, Luque FJ, Ramsay RR. Biochim Biophys Acta 1844 389-397 (2014)
  91. Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors. Prajapati R, Seong SH, Park SE, Paudel P, Jung HA, Choi JS. Sci Rep 11 23528 (2021)
  92. New 2H-chromene-3-carboxamide derivatives: design, synthesis and use as inhibitors of hMAO. Pan ZX, He X, Chen YY, Tang WJ, Shi JB, Tang YL, Song BA, Li J, Liu XH. Eur J Med Chem 80 278-284 (2014)
  93. Potent and Selective Monoamine Oxidase-B Inhibitory Activity: Fluoro- vs. Trifluoromethyl-4-hydroxylated Chalcone Derivatives. Mathew B, Mathew GE, Uçar G, Baysal I, Suresh J, Mathew S, Haridas A, Jayaprakash V. Chem Biodivers 13 1046-1052 (2016)
  94. Up-regulated monoamine oxidase in the mouse uterus during the peri-implantation period. Zhang D, Lei C, Zhang W. Arch Gynecol Obstet 284 861-866 (2011)
  95. 3D similarities between the binding sites of monoaminergic target proteins. Núñez-Vivanco G, Fierro A, Moya P, Iturriaga-Vásquez P, Reyes-Parada M. PLoS One 13 e0200637 (2018)
  96. Activity-dependent Regulation of Histone Lysine Demethylase KDM1A by a Putative Thiol/Disulfide Switch. Ricq EL, Hooker JM, Haggarty SJ. J Biol Chem 291 24756-24767 (2016)
  97. Aspartic acid substitutions in monoamine oxidase-A reveal both catalytic-dependent and -independent influences on cell viability and proliferation. Wei Z, Satram-Maharaj T, Chaharyn B, Kuski K, Pennington PR, Cao X, Chlan J, Mousseau DD. J Neural Transm (Vienna) 119 1285-1294 (2012)
  98. Hybrid caffeic acid derivatives as monoamine oxidases inhibitors: synthesis, radical scavenging activity, molecular docking studies and in silico ADMET analysis. Dhiman P, Malik N, Khatkar A. Chem Cent J 12 112 (2018)
  99. Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole-In Vitro and In Vivo Investigations. Betari N, Sahlholm K, Morató X, Godoy-Marín H, Jáuregui O, Teigen K, Ciruela F, Haavik J. Front Pharmacol 11 593416 (2020)
  100. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis. Kopacz MM, Heuts DP, Fraaije MW. FEBS J 281 4384-4393 (2014)
  101. Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1. Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF. Biochemistry 51 4888-4897 (2012)
  102. Mutagenic probes of the role of Ser209 on the cavity shaping loop of human monoamine oxidase A. Wang J, Harris J, Mousseau DD, Edmondson DE. FEBS J 276 4569-4581 (2009)
  103. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines. Wichitnithad W, O'Callaghan JP, Miller DB, Train BC, Callery PS. Bioorg Med Chem 19 7482-7492 (2011)
  104. A novel series of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones as selective monoamine oxidase (MAO) A inhibitors. Mattsson C, Svensson P, Sonesson C. Eur J Med Chem 73 177-186 (2014)
  105. Biaryl scaffold-focused virtual screening for anti-aggregatory and neuroprotective effects in Alzheimer's disease. Khalid S, Zahid MA, Ali H, Kim YS, Khan S. BMC Neurosci 19 74 (2018)
  106. Design and synthesis of novel 2-pyrazoline-1-ethanone derivatives as selective MAO inhibitors. Tong X, Chen R, Zhang TT, Han Y, Tang WJ, Liu XH. Bioorg Med Chem 23 515-525 (2015)
  107. Design of novel nicotinamides as potent and selective monoamine oxidase a inhibitors. Shi L, Yang Y, Li ZL, Zhu ZW, Liu CH, Zhu HL. Bioorg Med Chem 18 1659-1664 (2010)
  108. Fluorescent Mechanism-Based Probe for Aerobic Flavin-Dependent Enzyme Activity. McCulloch IP, La Clair JJ, Jaremko MJ, Burkart MD. Chembiochem 17 1598-1601 (2016)
  109. Novel Thiosemicarbazone Derivatives: In Vitro and In Silico Evaluation as Potential MAO-B Inhibitors. Osmaniye D, Kurban B, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Molecules 26 6640 (2021)
  110. 2-pyrazoline derivatives in neuropharmacology: Synthesis, ADME prediction, molecular docking and in vivo biological evaluation. Upadhyay S, Tripathi AC, Paliwal S, Saraf SK. EXCLI J 16 628-649 (2017)
  111. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer's disease. Denya I, Malan SF, Enogieru AB, Omoruyi SI, Ekpo OE, Kapp E, Zindo FT, Joubert J. Medchemcomm 9 357-370 (2018)
  112. Discovery of Biomarkers and Potential Mechanisms of Agarwood Incense Smoke Intervention by Untargeted Metabolomics and Network Pharmacology. Dong M, Du H, Li X, Zhang L, Wang X, Wang Z, Jiang H. Drug Des Devel Ther 16 265-278 (2022)
  113. Enantioselective Interactions of Anti-Infective 8-Aminoquinoline Therapeutics with Human Monoamine Oxidases A and B. Chaurasiya ND, Liu H, Doerksen RJ, Nanayakkara NPD, Walker LA, Tekwani BL. Pharmaceuticals (Basel) 14 398 (2021)
  114. Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). Tang H, Zhang K, Hu H, Wu G, Wang W, Zhu X, Liu G, Xu P. mBio 11 e02012-20 (2020)
  115. Natural based piperine derivatives as potent monoamine oxidase inhibitors: an in silico ADMET analysis and molecular docking studies. Dhiman P, Malik N, Khatkar A. BMC Chem 14 12 (2020)
  116. New Monocyclic Terpenoid Lactones from a Brown Algae Sargassum macrocarpum as Monoamine Oxidase Inhibitors. Kwon J, Lee K, Hwang H, Kim SH, Park SE, Durai P, Park K, Kim HS, Jang DS, Choi JS, Kwon HC. Plants (Basel) 11 1998 (2022)
  117. Synthesis, Biological Evaluation and Molecular Modeling Studies of Propargyl-Containing 2,4,6-Trisubstituted Pyrimidine Derivatives as Potential Anti-Parkinson Agents. Kumar B, Kumar M, Dwivedi AR, Kumar V. ChemMedChem 13 705-712 (2018)
  118. Why p-OMe- and p-Cl-β-Methylphenethylamines Display Distinct Activities upon MAO-B Binding. Fierro A, Edmondson DE, Celis-Barros C, Rebolledo-Fuentes M, Zapata-Torres G. PLoS One 11 e0154989 (2016)
  119. In Vitro and In Silico Characterization of Kurarinone as a Dopamine D1A Receptor Antagonist and D2L and D4 Receptor Agonist. Prajapati R, Seong SH, Paudel P, Park SE, Jung HA, Choi JS. ACS Omega 6 33443-33453 (2021)
  120. Antidepressant-like effect of dehydrozingerone from Zingiber officinale by elevating monoamines in brain: in silico and in vivo studies. Moorkoth S, Prathyusha NS, Manandhar S, Xue Y, Sankhe R, Pai KSR, Kumar N. Pharmacol Rep 73 1273-1286 (2021)
  121. Design, Synthesis, and Biological Evaluation of Novel MAO-A Inhibitors Targeting Lung Cancer. Bardaweel S, Aljanabi R, Sabbah D, Sweidan K. Molecules 27 2887 (2022)
  122. Development of Isopropyl-Tailed Chalcones as a New Class of Selective MAO-B Inhibitors for the Treatment of Parkinson's Disorder. Kumar S, Oh JM, Abdelgawad MA, Abourehab MAS, Tengli AK, Tengli AK, Singh AK, Ahmad I, Patel H, Mathew B, Kim H. ACS Omega 8 6908-6917 (2023)
  123. MAO inhibitory activity of bromo-2-phenylbenzofurans: synthesis, in vitro study, and docking calculations. Delogu GL, Pintus F, Mayán L, Matos MJ, Vilar S, Munín J, Fontenla JA, Hripcsak G, Borges F, Viña D. Medchemcomm 8 1788-1796 (2017)
  124. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. In Silico Pharmacol 11 3 (2023)
  125. Monoamine oxidase inhibitors: benzylidene-prop-2-ynyl-amines analogues. Jia Z, Wei S, Zhu Q. Biol Pharm Bull 33 725-728 (2010)
  126. Computational Chemistry and Molecular Modeling of Reversible MAO Inhibitors. Yelekçi K, Erdem SS. Methods Mol Biol 2558 221-252 (2023)
  127. Design, synthesis, and biological activity of dual monoamine oxidase A and heat shock protein 90 inhibitors, N-Methylpropargylamine-conjugated 4-isopropylresorcinol for glioblastoma. Tseng HJ, Banerjee S, Qian B, Lai MJ, Wu TY, Hsu TI, Lin TE, Hsu KC, Chuang KH, Liou JP, Shih JC. Eur J Med Chem 256 115459 (2023)
  128. Modified Tacrine Derivatives as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Synthesis, Biological Evaluation, and Molecular Modeling Study. Fares S, El Husseiny WM, Selim KB, Massoud MAM. ACS Omega 8 26012-26034 (2023)
  129. Molecular docking analysis and dynamics simulation of salbutamol with the monoamine oxidase B (MAO-B) enzyme. Abdulhameed Odhar H, Fadhil Hashim A, Sami Humad S. Bioinformation 18 304-309 (2022)
  130. Monoamine Oxidase-A (MAO-A) Inhibitors Screened from the Autodisplayed Fv-Antibody Library. Sung JS, Kim S, Jung J, Kim TH, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Pyun JC. ACS Pharmacol Transl Sci 7 150-160 (2024)
  131. New Insights on the Activity and Selectivity of MAO-B Inhibitors through In Silico Methods. Pacureanu L, Bora A, Crisan L. Int J Mol Sci 24 9583 (2023)
  132. Rivastigmine-Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases. Vicente-Zurdo D, Brunetti L, Piemontese L, Guedes B, Cardoso SM, Chavarria D, Borges F, Madrid Y, Chaves S, Santos MA. Int J Mol Sci 24 8312 (2023)
  133. The evaluation of 1-tetralone and 4-chromanone derivatives as inhibitors of monoamine oxidase. Cloete SJ, N'Da CI, Legoabe LJ, Petzer A, Petzer JP. Mol Divers 25 491-507 (2021)