2bw4 Citations

Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism.

Proc Natl Acad Sci U S A 102 12041-6 (2005)
Related entries: 2bw5, 2bwd, 2bwi

Cited: 83 times
EuropePMC logo PMID: 16093314

Abstract

Copper-containing nitrite reductases catalyze the reduction of nitrite to nitric oxide (NO), a key step in denitrification that results in the loss of terrestrial nitrogen to the atmosphere. They are found in a wide variety of denitrifying bacteria and fungi of different physiology from a range of soil and aquatic ecosystems. Structural analysis of potential intermediates in the catalytic cycle is an important goal in understanding enzyme mechanism. Using "crystal harvesting" and substrate-soaking techniques, we have determined atomic resolution structures of four forms of the green Cu-nitrite reductase, from the soil bacterium Achromobacter cycloclastes. These structures are the resting state of the enzyme at 0.9 A, two species exhibiting different conformations of nitrite bound at the catalytic type 2 Cu, one of which is stable and also has NO present, at 1.10 A and 1.15 A, and a stable form with the product NO bound side-on to the catalytic type 2 Cu, at 1.12 A resolution. These structures provide incisive insights into the initial binding of substrate, its repositioning before catalysis, bond breakage (O-NO), and the formation of a stable NO adduct.

Articles - 2bw4 mentioned but not cited (12)

  1. Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS. Proc Natl Acad Sci U S A 102 12041-12046 (2005)
  2. Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. Kondrashov DA, Cui Q, Phillips GN. Biophys J 91 2760-2767 (2006)
  3. Protein Geometry Database: a flexible engine to explore backbone conformations and their relationships to covalent geometry. Berkholz DS, Krenesky PB, Davidson JR, Karplus PA. Nucleic Acids Res 38 D320-5 (2010)
  4. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. Horrell S, Antonyuk SV, Eady RR, Hasnain SS, Hough MA, Strange RW. IUCrJ 3 271-281 (2016)
  5. Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography. Ebrahim A, Appleby MV, Axford D, Beale J, Moreno-Chicano T, Sherrell DA, Strange RW, Hough MA, Owen RL. Acta Crystallogr D Struct Biol 75 151-159 (2019)
  6. An unprecedented insight into the catalytic mechanism of copper nitrite reductase from atomic-resolution and damage-free structures. Rose SL, Antonyuk SV, Sasaki D, Yamashita K, Hirata K, Ueno G, Ago H, Eady RR, Tosha T, Yamamoto M, Hasnain SS. Sci Adv 7 eabd8523 (2021)
  7. The Rise of Radicals in Bioinorganic Chemistry. Gray HB, Winkler JR. Isr J Chem 56 640-648 (2016)
  8. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures. Horrell S, Kekilli D, Sen K, Owen RL, Dworkowski FSN, Antonyuk SV, Keal TW, Yong CW, Eady RR, Hasnain SS, Strange RW, Hough MA. IUCrJ 5 283-292 (2018)
  9. Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography. Halsted TP, Yamashita K, Gopalasingam CC, Shenoy RT, Hirata K, Ago H, Ueno G, Blakeley MP, Eady RR, Antonyuk SV, Yamamoto M, Hasnain SS. IUCrJ 6 761-772 (2019)
  10. Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase. Sen K, Horrell S, Kekilli D, Yong CW, Keal TW, Atakisi H, Moreau DW, Thorne RE, Hough MA, Strange RW. IUCrJ 4 495-505 (2017)
  11. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the soluble domain of PPA0092, a putative nitrite reductase from Propionibacterium acnes. Nojiri M, Shirota F, Hira D, Suzuki S. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 123-127 (2009)
  12. A QM/MM Study of Nitrite Binding Modes in a Three-Domain Heme-Cu Nitrite Reductase. Sen K, Hough MA, Strange RW, Yong CW, Keal TW. Molecules 23 E2997 (2018)


Reviews citing this publication (12)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev 114 3659-3853 (2014)
  2. Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Merkle AC, Lehnert N. Dalton Trans 41 3355-3368 (2012)
  3. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Antioxid Redox Signal 17 684-716 (2012)
  4. Enzymology and ecology of the nitrogen cycle. Martínez-Espinosa RM, Cole JA, Richardson DJ, Watmough NJ. Biochem Soc Trans 39 175-178 (2011)
  5. Microbiology of nitrogen cycle in animal manure compost. Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T. Microb Biotechnol 4 700-709 (2011)
  6. Using synthetic chemistry to understand copper protein active sites: a personal perspective. Tolman WB. J Biol Inorg Chem 11 261-271 (2006)
  7. Gating mechanisms for biological electron transfer: integrating structure with biophysics reveals the nature of redox control in cytochrome P450 reductase and copper-dependent nitrite reductase. Leferink NG, Pudney CR, Brenner S, Heyes DJ, Eady RR, Samar Hasnain S, Hay S, Rigby SE, Scrutton NS. FEBS Lett 586 578-584 (2012)
  8. Recent structural insights into the function of copper nitrite reductases. Horrell S, Kekilli D, Strange RW, Hough MA. Metallomics 9 1470-1482 (2017)
  9. Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds. Pinter TBJ, Koebke KJ, Pecoraro VL. Angew Chem Int Ed Engl 59 7678-7699 (2020)
  10. The role of ligand-containing loops at copper sites in proteins. Dennison C. Nat Prod Rep 25 15-24 (2008)
  11. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Schröder GC, Meilleur F. Acta Crystallogr D Struct Biol 77 1251-1269 (2021)
  12. Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology. Mizohata E, Nakane T, Fukuda Y, Nango E, Iwata S. Biophys Rev 10 209-218 (2018)

Articles citing this publication (59)

  1. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Environ Microbiol 20 1041-1063 (2018)
  2. Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin. Copeland DM, Soares AS, West AH, Richter-Addo GB. J Inorg Biochem 100 1413-1425 (2006)
  3. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron. Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB. J Am Chem Soc 131 18119-18128 (2009)
  4. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Fukuda Y, Tse KM, Nakane T, Nakatsu T, Suzuki M, Sugahara M, Inoue S, Masuda T, Yumoto F, Matsugaki N, Nango E, Tono K, Joti Y, Kameshima T, Song C, Hatsui T, Yabashi M, Nureki O, Murphy ME, Inoue T, Iwata S, Mizohata E. Proc Natl Acad Sci U S A 113 2928-2933 (2016)
  5. Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase. Hough MA, Antonyuk SV, Strange RW, Eady RR, Hasnain SS. J Mol Biol 378 353-361 (2008)
  6. Spectroscopic and computational studies of nitrite reductase: proton induced electron transfer and backbonding contributions to reactivity. Ghosh S, Dey A, Sun Y, Scholes CP, Solomon EI. J Am Chem Soc 131 277-288 (2009)
  7. Structures of protein-protein complexes involved in electron transfer. Antonyuk SV, Han C, Eady RR, Hasnain SS. Nature 496 123-126 (2013)
  8. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. Yu F, Penner-Hahn JE, Pecoraro VL. J Am Chem Soc 135 18096-18107 (2013)
  9. Demonstration of proton-coupled electron transfer in the copper-containing nitrite reductases. Brenner S, Heyes DJ, Hay S, Hough MA, Eady RR, Hasnain SS, Scrutton NS. J Biol Chem 284 25973-25983 (2009)
  10. Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases. Ellis MJ, Grossmann JG, Eady RR, Hasnain SS. J Biol Inorg Chem 12 1119-1127 (2007)
  11. Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase. Chufán EE, Prigge ST, Siebert X, Eipper BA, Mains RE, Amzel LM. J Am Chem Soc 132 15565-15572 (2010)
  12. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration. Park GY, Deepalatha S, Puiu SC, Lee DH, Mondal B, Narducci Sarjeant AA, del Rio D, Pau MY, Solomon EI, Karlin KD. J Biol Inorg Chem 14 1301-1311 (2009)
  13. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases. Hayashi T, Lin IJ, Chen Y, Fee JA, Moënne-Loccoz P. J Am Chem Soc 129 14952-14958 (2007)
  14. Resolution of the spectroscopy versus crystallography issue for NO intermediates of nitrite reductase from Rhodobacter sphaeroides. Ghosh S, Dey A, Usov OM, Sun Y, Grigoryants VM, Scholes CP, Solomon EI. J Am Chem Soc 129 10310-10311 (2007)
  15. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Leferink NG, Antonyuk SV, Houwman JA, Scrutton NS, Eady RR, Hasnain SS. Nat Commun 5 4395 (2014)
  16. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. Fukuda Y, Tse KM, Suzuki M, Diederichs K, Hirata K, Nakane T, Sugahara M, Nango E, Tono K, Joti Y, Kameshima T, Song C, Hatsui T, Yabashi M, Nureki O, Matsumura H, Inoue T, Iwata S, Mizohata E. J Biochem 159 527-538 (2016)
  17. Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D. Phys Chem Chem Phys 12 7276-7289 (2010)
  18. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Paraskevopoulos K, Sundararajan M, Surendran R, Hough MA, Eady RR, Hillier IH, Hasnain SS. Dalton Trans 3067-3076 (2006)
  19. Enzyme conformational dynamics during catalysis and in the 'resting state' monitored by hydrogen/deuterium exchange mass spectrometry. Liu YH, Konermann L. FEBS Lett 580 5137-5142 (2006)
  20. Structural insights into the function of a thermostable copper-containing nitrite reductase. Fukuda Y, Tse KM, Lintuluoto M, Fukunishi Y, Mizohata E, Matsumura H, Takami H, Nojiri M, Inoue T. J Biochem 155 123-135 (2014)
  21. Spectroscopic characterization of reaction intermediates in a model for copper nitrite reductase. Kujime M, Fujii H. Angew Chem Int Ed Engl 45 1089-1092 (2006)
  22. Laser-flash photolysis indicates that internal electron transfer is triggered by proton uptake by Alcaligenes xylosoxidans copper-dependent nitrite reductase. Leferink NG, Eady RR, Hasnain SS, Scrutton NS. FEBS J 279 2174-2181 (2012)
  23. Structure and mechanism of copper-carbonic anhydrase II: a nitrite reductase. Andring JT, Kim CU, McKenna R. IUCrJ 7 287-293 (2020)
  24. Coordination of NO(2)(-) ligand to Cu(I) ion in an O,O-bidentate fashion that evolves NO gas upon protonation: a model reaction relevant to the denitrification process. Chen CS, Yeh WY. Chem Commun (Camb) 46 3098-3100 (2010)
  25. Linkage isomerization in heme-NOx compounds: understanding NO, nitrite, and hyponitrite interactions with iron porphyrins. Xu N, Yi J, Richter-Addo GB. Inorg Chem 49 6253-6266 (2010)
  26. Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis. Hedison TM, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS. ACS Catal 9 6087-6099 (2019)
  27. Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp. Adhikari UK, Rahman MM. Comput Biol Chem 67 102-113 (2017)
  28. Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go. Koebke KJ, Pecoraro VL. ACS Catal 8 8046-8057 (2018)
  29. Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase--a contribution from quantum chemical studies. De Marothy SA, Blomberg MR, Siegbahn PE. J Comput Chem 28 528-539 (2007)
  30. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor. Wang X, Yu P, Zeng C, Ding H, Li Y, Wang C, Lu A. Appl Environ Microbiol 81 5387-5394 (2015)
  31. High-temperature and high-resolution crystallography of thermostable copper nitrite reductase. Fukuda Y, Inoue T. Chem Commun (Camb) 51 6532-6535 (2015)
  32. The structure of a ferrous heme-nitro species in the binuclear heme a3/CuB center of ba3-cytochrome c oxidase as determined by resonance Raman spectroscopy. Loullis A, Noor MR, Soulimane T, Pinakoulaki E. Chem Commun (Camb) 51 286-289 (2015)
  33. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography. Doutch J, Hough MA, Hasnain SS, Strange RW. J Synchrotron Radiat 19 19-29 (2012)
  34. Direct electron transfer reactions between human ceruloplasmin and electrodes. Haberska K, Vaz-Domínguez C, De Lacey AL, Dagys M, Reimann CT, Shleev S. Bioelectrochemistry 76 34-41 (2009)
  35. First example of a Cu(I)-(η2-O,O)nitrite complex derived from Cu(II)-nitrosyl. Kalita A, Kumar P, Deka RC, Mondal B. Chem Commun (Camb) 48 1251-1253 (2012)
  36. High-resolution neutron crystallography visualizes an OH-bound resting state of a copper-containing nitrite reductase. Fukuda Y, Hirano Y, Kusaka K, Inoue T, Tamada T. Proc Natl Acad Sci U S A 117 4071-4077 (2020)
  37. The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures. Periyasamy G, Sundararajan M, Hillier IH, Burton NA, McDouall JJ. Phys Chem Chem Phys 9 2498-2506 (2007)
  38. Active site comparison of CoII blue and green nitrite reductases. Sato K, Dennison C. Chemistry 12 6647-6659 (2006)
  39. Insights into unknown foreign ligand in copper nitrite reductase. Fukuda Y, Tse KM, Kado Y, Mizohata E, Matsumura H, Inoue T. Biochem Biophys Res Commun 464 622-628 (2015)
  40. Mononuclear-dinuclear equilibrium of grafted copper complexes confined in the nanochannels of MCM-41 silica. Zhang K, Lam KF, Albela B, Xue T, Khrouz L, Hou QW, Yuan EH, He MY, Bonneviot L. Chemistry 17 14258-14266 (2011)
  41. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China. Fan Z, Han RM, Ma J, Wang GX. Environ Sci Pollut Res Int 23 14102-14114 (2016)
  42. Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase. Tikhonova TV, Sorokin DY, Hagen WR, Khrenova MG, Muyzer G, Rakitina TV, Shabalin IG, Trofimov AA, Tsallagov SI, Popov VO. Proc Natl Acad Sci U S A 117 5280-5290 (2020)
  43. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping-Electron Paramagnetic Resonance Approach. Hedison TM, Shanmugam M, Heyes DJ, Edge R, Scrutton NS. Angew Chem Int Ed Engl 59 13936-13940 (2020)
  44. Intra-electron transfer induced by protonation in copper-containing nitrite reductase. Lintuluoto M, Lintuluoto JM. Metallomics 10 565-578 (2018)
  45. Structure and nitrite reduction reactivity study of bio-inspired copper(i)-nitro complexes in steric and electronic considerations of tridentate nitrogen ligands. Chang YL, Lin YF, Chuang WJ, Kao CL, Narwane M, Chen HY, Chiang MY, Hsu SCN. Dalton Trans 47 5335-5341 (2018)
  46. Structure-function relationship of assimilatory nitrite reductases from the leaf and root of tobacco based on high-resolution structures. Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. Protein Sci 21 383-395 (2012)
  47. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite. Qin X, Deng L, Hu C, Li L, Chen X. Chemistry 23 14900-14910 (2017)
  48. Copper nitrite reductase from Sinorhizobium meliloti 2011: Crystal structure and interaction with the physiological versus a nonmetabolically related cupredoxin-like mediator. Ramírez CS, Tolmie C, Opperman DJ, González PJ, Rivas MG, Brondino CD, Ferroni FM. Protein Sci 30 2310-2323 (2021)
  49. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. Biomolecules 11 1043 (2021)
  50. The importance of the long type 1 copper-binding loop of nitrite reductase for structure and function. Sato K, Firbank SJ, Li C, Banfield MJ, Dennison C. Chemistry 14 5820-5828 (2008)
  51. X-ray crystal structure of a mutant assimilatory nitrite reductase that shows sulfite reductase-like activity. Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. Chem Biodivers 9 1989-1999 (2012)
  52. Crystallographic study of dioxygen chemistry in a copper-containing nitrite reductase from Geobacillus thermodenitrificans. Fukuda Y, Matsusaki T, Tse KM, Mizohata E, Murphy MEP, Inoue T. Acta Crystallogr D Struct Biol 74 769-777 (2018)
  53. Nature of the copper-nitrosyl intermediates of copper nitrite reductases during catalysis. Hough MA, Conradie J, Strange RW, Antonyuk SV, Eady RR, Ghosh A, Hasnain SS. Chem Sci 11 12485-12492 (2020)
  54. Single crystal spectroscopy and multiple structures from one crystal (MSOX) define catalysis in copper nitrite reductases. Rose SL, Baba S, Okumura H, Antonyuk SV, Sasaki D, Hedison TM, Shanmugam M, Heyes DJ, Scrutton NS, Kumasaka T, Tosha T, Eady RR, Yamamoto M, Hasnain SS. Proc Natl Acad Sci U S A 119 e2205664119 (2022)
  55. Structures of substrate- and product-bound forms of a multi-domain copper nitrite reductase shed light on the role of domain tethering in protein complexes. Sasaki D, Watanabe TF, Eady RR, Garratt RC, Antonyuk SV, Hasnain SS. IUCrJ 7 557-565 (2020)
  56. The type 1 copper site of pseudoazurin: axial and rhombic. Gast P, Broeren FG, Sottini S, Aoki R, Takashina A, Yamaguchi T, Kohzuma T, Groenen EJ. J Inorg Biochem 137 57-63 (2014)
  57. Nickel(II)-substituted azurin I from Alcaligenes xylosoxidans as characterized by resonance Raman spectroscopy at cryogenic temperature. Fitzpatrick MB, Czernuszewicz RS. J Biol Inorg Chem 14 611-620 (2009)
  58. Nitric oxide-release study of a bio-inspired copper(i)-nitrito complex under chemical and biological conditions. Chuang WJ, Narwane M, Chen HY, Kao CL, Huang B, Hsu KM, Wang YM, Hsu SCN. Dalton Trans 47 13151-13157 (2018)
  59. Reversible thermally induced spin crossover in the myoglobin-nitrito adduct directly monitored by resonance Raman spectroscopy. Valianti VK, Tselios C, Pinakoulaki E. RSC Adv 13 9020-9025 (2023)