2i7n Citations

Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder.

J Biol Chem 282 27984-93 (2007)
Cited: 54 times
EuropePMC logo PMID: 17631502

Abstract

Pantothenate kinase (PanK) catalyzes the first step in CoA biosynthesis and there are three human genes that express four isoforms with highly conserved catalytic core domains. Here we report the homodimeric structures of the catalytic cores of PanK1alpha and PanK3 in complex with acetyl-CoA, a feedback inhibitor. Each monomer adopts a fold of the actin kinase superfamily and the inhibitor-bound structures explain the basis for the allosteric regulation by CoA thioesters. These structures also provide an opportunity to investigate the structural effects of the PanK2 mutations that have been implicated in neurodegeneration. Biochemical and thermodynamic analyses of the PanK3 mutant proteins corresponding to PanK2 mutations show that mutant proteins with compromised activities and/or stabilities correlate with a higher incidence of the early onset of disease.

Articles - 2i7n mentioned but not cited (3)

  1. Human pantothenate kinase 4 is a pseudo-pantothenate kinase. Yao J, Subramanian C, Rock CO, Jackowski S. Protein Sci 28 1031-1047 (2019)
  2. A variation in PANK2 gene is causing Pantothenate kinase-associated Neurodegeneration in a family from Jammu and Kashmir - India. Angural A, Singh I, Mahajan A, Pandoh P, Dhar MK, Kaul S, Verma V, Rai E, Razdan S, Kishore Pandita K, Sharma S. Sci Rep 7 4834 (2017)
  3. PKAN neurodegeneration and residual PANK2 activities in patient erythrocytes. Werning M, Müllner EW, Mlynek G, Dobretzberger V, Djinovic-Carugo K, Baron DM, Prokisch H, Büchner B, Klopstock T, Salzer U. Ann Clin Transl Neurol 7 1340-1351 (2020)


Reviews citing this publication (11)

  1. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. Gregory A, Polster BJ, Hayflick SJ. J. Med. Genet. 46 73-80 (2009)
  2. Coenzyme A biosynthesis: an antimicrobial drug target. Spry C, Kirk K, Saliba KJ. FEMS Microbiol. Rev. 32 56-106 (2008)
  3. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Arber CE, Li A, Houlden H, Wray S. Neuropathol. Appl. Neurobiol. 42 220-241 (2016)
  4. Thermal denaturation assays in chemical biology. Senisterra G, Chau I, Vedadi M. Assay Drug Dev Technol 10 128-136 (2012)
  5. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA. J. Struct. Biol. 172 107-119 (2010)
  6. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Hinarejos I, Machuca-Arellano C, Sancho P, Espinós C. Antioxidants (Basel) 9 E1020 (2020)
  7. Structural genomics and drug discovery: all in the family. Weigelt J, McBroom-Cerajewski LD, Schapira M, Zhao Y, Arrowsmith CH. Curr Opin Chem Biol 12 32-39 (2008)
  8. Phenotypes and genotypes of patients with pantothenate kinase-associated neurodegeneration in Asian and Caucasian populations: 2 cases and literature review. Lee CH, Lu CS, Chuang WL, Yeh TH, Jung SM, Huang CL, Lai SC. ScientificWorldJournal 2013 860539 (2013)
  9. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Int J Mol Sci 24 10696 (2023)
  10. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Sami N, Kumar V, Islam A, Ali S, Ahmad F, Hassan I. Mol. Neurobiol. 54 5085-5106 (2017)
  11. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Riske BF, Luckhart S, Riehle MA. Int J Mol Sci 24 13915 (2023)

Articles citing this publication (40)

  1. Conserved structural elements in the V3 crown of HIV-1 gp120. Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. Nat. Struct. Mol. Biol. 17 955-961 (2010)
  2. A distinct metabolic signature of human colorectal cancer with prognostic potential. Qiu Y, Cai G, Zhou B, Li D, Zhao A, Xie G, Li H, Cai S, Xie D, Huang C, Ge W, Zhou Z, Xu LX, Jia W, Zheng S, Yen Y, Jia W. Clin. Cancer Res. 20 2136-2146 (2014)
  3. Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. Yokooji Y, Tomita H, Atomi H, Imanaka T. J. Biol. Chem. 284 28137-28145 (2009)
  4. A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity. Allali-Hassani A, Wasney GA, Chau I, Hong BS, Senisterra G, Loppnau P, Shi Z, Moult J, Edwards AM, Arrowsmith CH, Park HW, Schapira M, Vedadi M. Biochem. J. 424 15-26 (2009)
  5. Application of high-throughput isothermal denaturation to assess protein stability and screen for ligands. Senisterra GA, Soo Hong B, Park HW, Vedadi M. J Biomol Screen 13 337-342 (2008)
  6. Compartmentalization of mammalian pantothenate kinases. Alfonso-Pecchio A, Garcia M, Leonardi R, Jackowski S. PLoS ONE 7 e49509 (2012)
  7. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. Garcia M, Leonardi R, Zhang YM, Rehg JE, Jackowski S. PLoS ONE 7 e40871 (2012)
  8. Pantothenate kinase-associated neurodegeneration: insights from a Drosophila model. Wu Z, Li C, Lv S, Zhou B. Hum. Mol. Genet. 18 3659-3672 (2009)
  9. Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain. Leonardi R, Zhang YM, Yun MK, Zhou R, Zeng FY, Lin W, Cui J, Chen T, Rock CO, White SW, Jackowski S. Chem. Biol. 17 892-902 (2010)
  10. Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Campanella A, Privitera D, Guaraldo M, Rovelli E, Barzaghi C, Garavaglia B, Santambrogio P, Cozzi A, Levi S. Hum. Mol. Genet. 21 4049-4059 (2012)
  11. Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: identification of a conditional mutation in the pantothenate kinase gene CAB1. Olzhausen J, Schübbe S, Schüller HJ. Curr. Genet. 55 163-173 (2009)
  12. Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. Takagi M, Tamaki H, Miyamoto Y, Leonardi R, Hanada S, Jackowski S, Chohnan S. J. Bacteriol. 192 233-241 (2010)
  13. Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV). Walsh JM, Parasuram R, Rajput PR, Rozners E, Ondrechen MJ, Beuning PJ. Environ. Mol. Mutagen. 53 766-776 (2012)
  14. The type III pantothenate kinase encoded by coaX is essential for growth of Bacillus anthracis. Paige C, Reid SD, Hanna PC, Claiborne A. J. Bacteriol. 190 6271-6275 (2008)
  15. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice. Shumar SA, Fagone P, Alfonso-Pecchio A, Gray JT, Rehg JE, Jackowski S, Leonardi R. PLoS ONE 10 e0130013 (2015)
  16. Acanthocytosis and the c.680 A>G Mutation in the PANK2 Gene: A Study Enrolling a Cohort of PKAN Patients from the Dominican Republic. Schiessl-Weyer J, Roa P, Laccone F, Kluge B, Tichy A, De Almeida Ribeiro E, Prohaska R, Stoeter P, Siegl C, Salzer U. PLoS ONE 10 e0125861 (2015)
  17. Allosteric Regulation of Mammalian Pantothenate Kinase. Subramanian C, Yun MK, Yao J, Sharma LK, Lee RE, White SW, Jackowski S, Rock CO. J. Biol. Chem. 291 22302-22314 (2016)
  18. Novel homozygous PANK2 mutation causing atypical pantothenate kinase-associated neurodegeneration (PKAN) in a Cypriot family. Tanteles GA, Spanou-Aristidou E, Antoniou C, Christophidou-Anastasiadou V, Kleopa KA. J. Neurol. Sci. 340 233-236 (2014)
  19. The role of UPF0157 in the folding of M. tuberculosis dephosphocoenzyme A kinase and the regulation of the latter by CTP. Walia G, Kumar P, Surolia A. PLoS ONE 4 e7645 (2009)
  20. iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. Arber C, Angelova PR, Wiethoff S, Tsuchiya Y, Mazzacuva F, Preza E, Bhatia KP, Mills K, Gout I, Abramov AY, Hardy J, Duce JA, Houlden H, Wray S. PLoS ONE 12 e0184104 (2017)
  21. A Systems Chemoproteomic Analysis of Acyl-CoA/Protein Interaction Networks. Levy MJ, Montgomery DC, Sardiu ME, Montano JL, Bergholtz SE, Nance KD, Thorpe AL, Fox SD, Lin Q, Andresson T, Florens L, Washburn MP, Meier JL. Cell Chem Biol 27 322-333.e5 (2020)
  22. A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases. Sharma LK, Leonardi R, Lin W, Boyd VA, Goktug A, Shelat AA, Chen T, Jackowski S, Rock CO. J. Med. Chem. 58 1563-1568 (2015)
  23. Crystal Structures of Type-II Inositol Polyphosphate 5-Phosphatase INPP5B with Synthetic Inositol Polyphosphate Surrogates Reveal New Mechanistic Insights for the Inositol 5-Phosphatase Family. Mills SJ, Silvander C, Cozier G, Trésaugues L, Nordlund P, Potter BV. Biochemistry 55 1384-1397 (2016)
  24. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. PLoS Pathog 17 e1009797 (2021)
  25. A therapeutic approach to pantothenate kinase associated neurodegeneration. Sharma LK, Subramanian C, Yun MK, Frank MW, White SW, Rock CO, Lee RE, Jackowski S. Nat Commun 9 4399 (2018)
  26. Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Corbin DR, Rehg JE, Shepherd DL, Stoilov P, Percifield RJ, Horner L, Frase S, Zhang YM, Rock CO, Hollander JM, Jackowski S, Leonardi R. Mol. Genet. Metab. 120 350-362 (2017)
  27. Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Subramanian C, Frank MW, Tangallapally R, Yun MK, Edwards A, White SW, Lee RE, Rock CO, Jackowski S. Sci Transl Med 13 eabf5965 (2021)
  28. Probing coenzyme A homeostasis with semisynthetic biosensors. Xue L, Schnacke P, Frei MS, Koch B, Hiblot J, Wombacher R, Fabritz S, Johnsson K. Nat Chem Biol 19 346-355 (2023)
  29. Activation of Anopheles stephensi Pantothenate Kinase and Coenzyme A Biosynthesis Reduces Infection with Diverse Plasmodium Species in the Mosquito Host. Simão-Gurge RM, Thakre N, Strickland J, Isoe J, Delacruz LR, Torrevillas BK, Rodriguez AM, Riehle MA, Luckhart S. Biomolecules 11 807 (2021)
  30. Characterization and validation of Entamoeba histolytica pantothenate kinase as a novel anti-amebic drug target. Nurkanto A, Jeelani G, Yamamoto T, Naito Y, Hishiki T, Mori M, Suematsu M, Shiomi K, Hashimoto T, Nozaki T. Int J Parasitol Drugs Drug Resist 8 125-136 (2018)
  31. High-resolution crystal structure and chemical screening reveal pantothenate kinase as a new target for antifungal development. Gihaz S, Gareiss P, Choi JY, Renard I, Pal AC, Surovsteva Y, Chiu JE, Thekkiniath J, Plummer M, Hungerford W, Montgomery ML, Hosford A, Adams EM, Lightfoot JD, Fox D, Ojo KK, Staker BL, Fuller K, Ben Mamoun C. Structure 30 1494-1507.e6 (2022)
  32. Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases. Sindlinger J, Schön S, Eirich J, Kirchgäßner S, Finkemeier I, Schwarzer D. Chembiochem 23 e202200255 (2022)
  33. A Potential Citrate Shunt in Erythrocytes of PKAN Patients Caused by Mutations in Pantothenate Kinase 2. Werning M, Dobretzberger V, Brenner M, Müllner EW, Mlynek G, Djinovic-Carugo K, Baron DM, Fragner L, Bischoff AT, Büchner B, Klopstock T, Weckwerth W, Salzer U. Biomolecules 12 325 (2022)
  34. Chemoproteomics Yields a Selective Molecular Host for Acetyl-CoA. Lieberman WK, Brown ZA, Kantner DS, Jing Y, Megill E, Evans ND, Crawford MC, Jhulki I, Grose C, Jones JE, Snyder NW, Meier JL. J Am Chem Soc 145 16899-16905 (2023)
  35. Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds. Ceccatelli Berti C, Gilea AI, De Gregorio MA, Goffrini P. Int J Mol Sci 22 (2020)
  36. Genetic mutation spectrum of pantothenate kinase-associated neurodegeneration expanded by breakpoint sequencing in pantothenate kinase 2 gene. Yang D, Cho S, Cho SI, Kim M, Seong MW, Park SS. Orphanet J Rare Dis 17 111 (2022)
  37. Increased biosynthesis of acetyl-CoA in the yeast Saccharomyces cerevisiae by overexpression of a deregulated pantothenate kinase gene and engineering of the coenzyme A biosynthetic pathway. Olzhausen J, Grigat M, Seifert L, Ulbricht T, Schüller HJ. Appl Microbiol Biotechnol 105 7321-7337 (2021)
  38. LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Sharma LK, Yun MK, Subramanian C, Tangallapally R, Jackowski S, Rock CO, White SW, Lee RE. Bioorg Med Chem 52 116504 (2021)
  39. Pantothenate Kinase 4 Governs Lens Epithelial Fibrosis by Negatively Regulating Pyruvate Kinase M2-Related Glycolysis. Li X, Luo LL, Li RF, Chen CL, Sun M, Lin S. Aging Dis 14 1834-1852 (2023)
  40. Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. Li Y, Steinberg J, Coleman Z, Wang S, Subramanian C, Li Y, Patay Z, Akers W, Rock CO, Jackowski S, Bagga P. J Transl Med 20 103 (2022)