2i4i Citations

Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP.

Abstract

DExD-box helicases are involved in all aspects of cellular RNA metabolism. Conserved domains 1 and 2 contain nine signature motifs that are responsible for nucleotide binding, RNA binding and ATP hydrolysis. The human DEAD-box helicase DDX3X has been associated with several different cellular processes, such as cell-growth control, mRNA transport and translation, and is suggested to be essential for the export of unspliced/partially spliced HIV mRNAs from the nucleus to the cytoplasm. Here, the crystal structure of conserved domains 1 and 2 of DDX3X, including a DDX3-specific insertion that is not generally found in human DExD-box helicases, is presented. The N-terminal domain 1 and the C-terminal domain 2 both display RecA-like folds comprising a central beta-sheet flanked by alpha-helices. Interestingly, the DDX3X-specific insertion forms a helical element that extends a highly positively charged sequence in a loop, thus increasing the RNA-binding surface of the protein. Surprisingly, although DDX3X was crystallized in the presence of a large excess of ADP or the slowly hydrolyzable ATP analogue ATPgammaS the contaminant AMP was seen in the structure. A fluorescent-based stability assay showed that the thermal stability of DDX3X was increased by the mononucleotide AMP but not by ADP or ATPgammaS, suggesting that DDX3X is stabilized by AMP and elucidating why AMP was found in the nucleotide-binding pocket.

Reviews - 2i4i mentioned but not cited (5)

  1. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Corley M, Burns MC, Yeo GW. Mol Cell 78 9-29 (2020)
  2. DDX3, a potential target for cancer treatment. Bol GM, Xie M, Raman V. Mol Cancer 14 188 (2015)
  3. Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: A Structural Overview of Their Hijacking Through Multiple Viral Proteins. Squeglia F, Romano M, Ruggiero A, Maga G, Berisio R. Front Chem 8 602162 (2020)
  4. Control of the eIF4E activity: structural insights and pharmacological implications. Romagnoli A, D'Agostino M, Ardiccioni C, Maracci C, Motta S, La Teana A, Di Marino D. Cell Mol Life Sci 78 6869-6885 (2021)
  5. DEAD/H-Box Helicases in Immunity, Inflammation, Cell Differentiation, and Cell Death and Disease. Samir P, Kanneganti TD. Cells 11 1608 (2022)

Articles - 2i4i mentioned but not cited (26)

  1. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker T, Superti-Furga G. EMBO J 27 2135-2146 (2008)
  2. Structural insights into RNA processing by the human RISC-loading complex. Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E. Nat Struct Mol Biol 16 1148-1153 (2009)
  3. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, Heerma van Voss MR, Gabrielson K, Bordt EA, Polster BM, Cope L, van der Groep P, Kondaskar A, Rudek MA, Hosmane RS, van der Wall E, van Diest PJ, Tran PT, Raman V. EMBO Mol Med 7 648-669 (2015)
  4. The DEAD-Box RNA Helicase DDX3 Interacts with m6A RNA Demethylase ALKBH5. Shah A, Rashid F, Awan HM, Hu S, Wang X, Chen L, Shan G. Stem Cells Int 2017 8596135 (2017)
  5. Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis. Epling LB, Grace CR, Lowe BR, Partridge JF, Enemark EJ. J Mol Biol 427 1779-1796 (2015)
  6. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. Floor SN, Condon KJ, Sharma D, Jankowsky E, Doudna JA. J Biol Chem 291 2412-2421 (2016)
  7. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA. Ajamian L, Abel K, Rao S, Vyboh K, García-de-Gracia F, Soto-Rifo R, Kulozik AE, Gehring NH, Mouland AJ. Biomolecules 5 2808-2839 (2015)
  8. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Xie M, Vesuna F, Botlagunta M, Bol GM, Irving A, Bergman Y, Hosmane RS, Kato Y, Winnard PT, Raman V. Oncotarget 6 29901-29913 (2015)
  9. The interaction of RNA helicase DDX3 with HIV-1 Rev-CRM1-RanGTP complex during the HIV replication cycle. Mahboobi SH, Javanpour AA, Mofrad MR. PLoS One 10 e0112969 (2015)
  10. The molecular evolution of PL10 homologs. Chang TC, Liu WS. BMC Evol Biol 10 127 (2010)
  11. Immunosuppressive Yersinia Effector YopM Binds DEAD Box Helicase DDX3 to Control Ribosomal S6 Kinase in the Nucleus of Host Cells. Berneking L, Schnapp M, Rumm A, Trasak C, Ruckdeschel K, Alawi M, Grundhoff A, Kikhney AG, Koch-Nolte F, Buck F, Perbandt M, Betzel C, Svergun DI, Hentschke M, Aepfelbacher M. PLoS Pathog 12 e1005660 (2016)
  12. Letter Structural and functional analyses of human DDX41 DEAD domain. Jiang Y, Zhu Y, Qiu W, Liu YJ, Cheng G, Liu ZJ, Ouyang S. Protein Cell 8 72-76 (2017)
  13. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1ε. Dolde C, Bischof J, Grüter S, Montada A, Halekotte J, Peifer C, Kalbacher H, Baumann U, Knippschild U, Suter B. J Cell Sci 131 jcs207316 (2018)
  14. A Computational Approach with Biological Evaluation: Combinatorial Treatment of Curcumin and Exemestane Synergistically Regulates DDX3 Expression in Cancer Cell Lines. Rampogu S, Kim SM, Son M, Baek A, Park C, Lee G, Kim Y, Kim GS, Kim JH, Lee KW. Biomolecules 10 E857 (2020)
  15. In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Botlagunta M, Kollapalli B, Kakarla L, Gajarla SP, Gade SP, Dadi CL, Penumadu A, Javeed S. Bioinformation 12 347-353 (2016)
  16. Evolutionary constraints acting on DDX3X protein potentially interferes with Rev-mediated nuclear export of HIV-1 RNA. Sharma D, Bhattacharya J. PLoS One 5 e9613 (2010)
  17. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. Sithole N, Williams CA, Vaughan AM, Kenyon JC, Lever AML. J Mol Biol 430 3111-3128 (2018)
  18. In-Vitro and in-Silico characterization of Sophora interrupta plant extract as an anticancer activity. Mathi P, Nikhil K, Ambatipudi N, Roy P, Bokka VR, Botlagunta M. Bioinformation 10 144-151 (2014)
  19. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein. Kellner JN, Meinhart A. Acta Crystallogr F Struct Biol Commun 71 1176-1188 (2015)
  20. Structure-based drug design and potent anti-cancer activity of tricyclic 5:7:5-fused diimidazo[4,5-d:4',5'-f][1,3]diazepines. Kondaskar A, Kondaskar S, Fishbein JC, Carter-Cooper BA, Lapidus RG, Sadowska M, Edelman MJ, Hosmane RS. Bioorg Med Chem 21 618-631 (2013)
  21. Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities. Abozeid MA, El-Sawi AA, Abdelmoteleb M, Awad H, Abdel-Aziz MM, Hassan Abdel-Rahman AR, Ibrahim El-Desoky ES. RSC Adv 10 42998-43009 (2020)
  22. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  23. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Int J Mol Sci 23 1771 (2022)
  24. Novel Butein Derivatives Repress DDX3 Expression by Inhibiting PI3K/AKT Signaling Pathway in MCF-7 and MDA-MB-231 Cell Lines. Rampogu S, Kim SM, Shaik B, Lee G, Kim JH, Kim GS, Lee KW, Kim MO. Front Oncol 11 712824 (2021)
  25. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Med Oncol 39 179 (2022)
  26. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, Waters AJ, Gitterman D, Lindsay S, Abascal F, Martincorena I, Kolesnik-Taylor A, Ng-Cordell E, Firth HV, Baker K, Perry JRB, Adams DJ, Gerety SS, Hurles ME. Nat Commun 14 7702 (2023)


Reviews citing this publication (25)

  1. Medulloblastomics: the end of the beginning. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM. Nat Rev Cancer 12 818-834 (2012)
  2. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Putnam AA, Jankowsky E. Biochim Biophys Acta 1829 884-893 (2013)
  3. DEAD-box proteins as RNA helicases and chaperones. Jarmoskaite I, Russell R. Wiley Interdiscip Rev RNA 2 135-152 (2011)
  4. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Sharma D, Jankowsky E. Crit Rev Biochem Mol Biol 49 343-360 (2014)
  5. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Hilbert M, Karow AR, Klostermeier D. Biol Chem 390 1237-1250 (2009)
  6. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Schröder M. Biochem Pharmacol 79 297-306 (2010)
  7. The role of the precursor structure in the biogenesis of microRNA. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ. Cell Mol Life Sci 68 2859-2871 (2011)
  8. Structural insights into the exon junction complex. Le Hir H, Andersen GR. Curr Opin Struct Biol 18 112-119 (2008)
  9. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. Soto-Rifo R, Ohlmann T. Wiley Interdiscip Rev RNA 4 369-385 (2013)
  10. The DEAD-box helicase eIF4A: paradigm or the odd one out? Andreou AZ, Klostermeier D. RNA Biol 10 19-32 (2013)
  11. Discovering new medicines targeting helicases: challenges and recent progress. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. J Biomol Screen 18 761-781 (2013)
  12. DDX3X: structure, physiologic functions and cancer. Mo J, Liang H, Su C, Li P, Chen J, Zhang B. Mol Cancer 20 38 (2021)
  13. Targeting RNA helicases in cancer: The translation trap. Heerma van Voss MR, van Diest PJ, Raman V. Biochim Biophys Acta Rev Cancer 1868 510-520 (2017)
  14. Medicinal chemistry strategies toward host targeting antiviral agents. Ji X, Li Z. Med Res Rev 40 1519-1557 (2020)
  15. DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Kukhanova MK, Karpenko IL, Ivanov AV. Molecules 25 E1015 (2020)
  16. General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Shen L, Pelletier J. Int J Mol Sci 21 E4402 (2020)
  17. Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Leitão AL, Costa MC, Enguita FJ. Int J Mol Sci 16 2269-2293 (2015)
  18. RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Hernández-Díaz T, Valiente-Echeverría F, Soto-Rifo R. Microorganisms 9 1206 (2021)
  19. Multi-step regulation of interferon induction by hepatitis C virus. Oshiumi H, Funami K, Aly HH, Matsumoto M, Seya T. Arch Immunol Ther Exp (Warsz) 61 127-138 (2013)
  20. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Ryan CS, Schröder M. Front Cell Dev Biol 10 1033684 (2022)
  21. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Rao S, Mahmoudi T. Front Cell Dev Biol 10 917599 (2022)
  22. The translational landscape as regulated by the RNA helicase DDX3. Park JT, Oh S. BMB Rep 55 125-135 (2022)
  23. DDX3X structural analysis: Implications in the pharmacology and innate immunity. De Colibus L, Stunnenberg M, Geijtenbeek TBH. Curr Res Immunol 3 100-109 (2022)
  24. Phase separation in innate immune response and inflammation-related diseases. Ma H, Liu M, Fu R, Feng J, Ren H, Cao J, Shi M. Front Immunol 14 1086192 (2023)
  25. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Lacroix M, Beauchemin H, Khandanpour C, Möröy T. Front Oncol 13 1148936 (2023)

Articles citing this publication (38)

  1. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, Lennon NJ, McKenna A, Meldrim J, Ramos AH, Ross MG, Russ C, Shefler E, Sivachenko A, Sogoloff B, Stojanov P, Tamayo P, Mesirov JP, Amani V, Teider N, Sengupta S, Francois JP, Northcott PA, Taylor MD, Yu F, Crabtree GR, Kautzman AG, Gabriel SB, Getz G, Jäger N, Jones DT, Lichter P, Pfister SM, Roberts TM, Meyerson M, Pomeroy SL, Cho YJ. Nature 488 106-110 (2012)
  2. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. Schröder M, Baran M, Bowie AG. EMBO J 27 2147-2157 (2008)
  3. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C. Science 339 1436-1441 (2013)
  4. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. Nucleic Acids Res 36 4708-4718 (2008)
  5. Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Tritschler F, Braun JE, Eulalio A, Truffault V, Izaurralde E, Weichenrieder O. Mol Cell 33 661-668 (2009)
  6. The DEXD/H-box RNA helicase DDX19 is regulated by an {alpha}-helical switch. Collins R, Karlberg T, Lehtiö L, Schütz P, van den Berg S, Dahlgren LG, Hammarström M, Weigelt J, Schüler H. J Biol Chem 284 10296-10300 (2009)
  7. Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. Kalverda AP, Thompson GS, Vogel A, Schröder M, Bowie AG, Khan AR, Homans SW. J Mol Biol 385 843-853 (2009)
  8. Genome-wide comprehensive analysis of human helicases. Umate P, Tuteja N, Tuteja R. Commun Integr Biol 4 118-137 (2011)
  9. Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation. Gu L, Fullam A, Brennan R, Schröder M. Mol Cell Biol 33 2004-2015 (2013)
  10. A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication. Garbelli A, Beermann S, Di Cicco G, Dietrich U, Maga G. PLoS One 6 e19810 (2011)
  11. Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Radi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G, Botta M. Bioorg Med Chem Lett 22 2094-2098 (2012)
  12. Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Oda S, Schröder M, Khan AR. Structure 17 1528-1537 (2009)
  13. A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins. Banroques J, Cordin O, Doère M, Linder P, Tanner NK. Mol Cell Biol 28 3359-3371 (2008)
  14. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. Maga G, Falchi F, Radi M, Botta L, Casaluce G, Bernardini M, Irannejad H, Manetti F, Garbelli A, Samuele A, Zanoli S, Esté JA, Gonzalez E, Zucca E, Paolucci S, Baldanti F, De Rijck J, Debyser Z, Botta M. ChemMedChem 6 1371-1389 (2011)
  15. Comparative structural analysis of human DEAD-box RNA helicases. Schütz P, Karlberg T, van den Berg S, Collins R, Lehtiö L, Högbom M, Holmberg-Schiavone L, Tempel W, Park HW, Hammarström M, Moche M, Thorsell AG, Schüler H. PLoS One 5 e12791 (2010)
  16. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Samal SK, Routray S, Veeramachaneni GK, Dash R, Botlagunta M. Sci Rep 5 9982 (2015)
  17. DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. Thulasi Raman SN, Liu G, Pyo HM, Cui YC, Xu F, Ayalew LE, Tikoo SK, Zhou Y. J Virol 90 3661-3675 (2016)
  18. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X. Song H, Ji X. Nat Commun 10 3085 (2019)
  19. A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Klostermeier D, Rudolph MG. Nucleic Acids Res 37 421-430 (2009)
  20. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. Fan JS, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, Yang D. J Mol Biol 388 1-10 (2009)
  21. Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. Han S, Sun S, Li P, Liu Q, Zhang Z, Dong H, Sun M, Wu W, Wang X, Guo H. J Virol 94 e01679-19 (2020)
  22. RNA Remodeling Activity of DEAD Box Proteins Tuned by Protein Concentration, RNA Length, and ATP. Kim Y, Myong S. Mol Cell 63 865-876 (2016)
  23. Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. Sharma D, Putnam AA, Jankowsky E. J Mol Biol 429 3730-3742 (2017)
  24. AMP sensing by DEAD-box RNA helicases. Putnam AA, Jankowsky E. J Mol Biol 425 3839-3845 (2013)
  25. RK-33 Is a Broad-Spectrum Antiviral Agent That Targets DEAD-Box RNA Helicase DDX3X. Yang SNY, Atkinson SC, Audsley MD, Heaton SM, Jans DA, Borg NA. Cells 9 E170 (2020)
  26. Synthesis and Antiviral Activity of Novel 1,3,4-Thiadiazole Inhibitors of DDX3X. Brai A, Ronzini S, Riva V, Botta L, Zamperini C, Borgini M, Trivisani CI, Garbelli A, Pennisi C, Boccuto A, Saladini F, Zazzi M, Maga G, Botta M. Molecules 24 E3988 (2019)
  27. Gle1 Regulates RNA Binding of the DEAD-Box Helicase Ded1 in Its Complex Role in Translation Initiation. Aryanpur PP, Regan CA, Collins JM, Mittelmeier TM, Renner DM, Vergara AM, Brown NP, Bolger TA. Mol Cell Biol 37 e00139-17 (2017)
  28. Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Tuteja N, Tarique M, Banu MS, Ahmad M, Tuteja R. Plant Mol Biol 85 639-651 (2014)
  29. Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways. Mulhern O, Bowie AG. Eur J Immunol 40 933-935 (2010)
  30. The variable N-terminal region of DDX5 contains structural elements and auto-inhibits its interaction with NS5B of hepatitis C virus. Dutta S, Gupta G, Choi YW, Kotaka M, Fielding BC, Song J, Tan YJ. Biochem J 446 37-46 (2012)
  31. Molecular dynamics simulation of the allosteric regulation of eIF4A protein from the open to closed state, induced by ATP and RNA substrates. Meng H, Li C, Wang Y, Chen G. PLoS One 9 e86104 (2014)
  32. Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop. Strohmeier J, Hertel I, Diederichsen U, Rudolph MG, Klostermeier D. Biol Chem 392 357-369 (2011)
  33. Inhibition of eukaryotic translation by tetratricopeptide-repeat proteins of Orientia tsutsugamushi. Bang S, Min CK, Ha NY, Choi MS, Kim IS, Kim YS, Cho NH. J Microbiol 54 136-144 (2016)
  34. Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Singh M, Srivastava KK, Bhattacharya SM. Parasitol Res 104 753-761 (2009)
  35. Unwinding the mechanisms of a DEAD-box RNA helicase in cancer. Russell R. J Mol Biol 427 1797-1800 (2015)
  36. Inhibition of DDX3 and COX-2 by forskolin and evaluation of anti-proliferative, pro-apoptotic effects on cervical cancer cells: molecular modelling and in vitro approaches. Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Lee KW, Pawar SC. Med Oncol 39 61 (2022)
  37. DDX3X Is Hijacked by Snakehead Vesiculovirus Phosphoprotein To Facilitate Virus Replication via Stabilization of the Phosphoprotein. Bei C, Zhang C, Wu H, Feng H, Zhang YA, Tu J. J Virol 97 e0003523 (2023)
  38. Interactions of the C-Terminal Truncated DEAD-Box Protein DDX3X With RNA and Nucleotide Substrates. Moore AFT, de Victoria AL, Koculi E. ACS Omega 6 12640-12646 (2021)