2f4w Citations

A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen.

Abstract

Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an "acidic trough" located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation.

Reviews - 2f4w mentioned but not cited (1)

Articles - 2f4w mentioned but not cited (8)

  1. A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Sheng Y, Hong JH, Doherty R, Srikumar T, Shloush J, Avvakumov GV, Walker JR, Xue S, Neculai D, Wan JW, Kim SK, Arrowsmith CH, Raught B, Dhe-Paganon S. Mol Cell Proteomics 11 329-341 (2012)
  2. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J Struct Biol 162 205-218 (2008)
  3. Structure of the human FANCL RING-Ube2T complex reveals determinants of cognate E3-E2 selection. Hodson C, Purkiss A, Miles JA, Walden H. Structure 22 337-344 (2014)
  4. A nanobody that recognizes a 14-residue peptide epitope in the E2 ubiquitin-conjugating enzyme UBC6e modulates its activity. Ling J, Cheloha RW, McCaul N, Sun ZJ, Wagner G, Ploegh HL. Mol Immunol 114 513-523 (2019)
  5. NMR and X-RAY structures of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway. Liu G, Forouhar F, Eletsky A, Atreya HS, Aramini JM, Xiao R, Huang YJ, Abashidze M, Seetharaman J, Liu J, Rost B, Acton T, Montelione GT, Hunt JF, Szyperski T. J Struct Funct Genomics 10 127-136 (2009)
  6. Molecular Simulation Elaborating the Mechanism of 1β-Hydroxy Alantolactone Inhibiting Ubiquitin-Conjugating Enzyme UbcH5s. Xu Y, Meng X. Sci Rep 10 141 (2020)
  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  8. Conformational epitope matching and prediction based on protein surface spiral features. Lo YT, Shih TC, Pai TW, Ho LP, Wu JL, Chou HY. BMC Genomics 22 116 (2021)


Reviews citing this publication (11)

  1. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res 26 423-440 (2016)
  2. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Scheffner M, Kumar S. Biochim Biophys Acta 1843 61-74 (2014)
  3. Cellular functions and molecular mechanisms of non-lysine ubiquitination. McClellan AJ, Laugesen SH, Ellgaard L. Open Biol 9 190147 (2019)
  4. Emerging functions of branched ubiquitin chains. French ME, Koehler CF, Hunter T. Cell Discov 7 6 (2021)
  5. Targeting HECT-type E3 ligases - insights from catalysis, regulation and inhibitors. Fajner V, Maspero E, Polo S. FEBS Lett 591 2636-2647 (2017)
  6. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Alpi AF, Chaugule V, Walden H. Biochem J 473 3401-3419 (2016)
  7. Fanconi anemia pathway as a prospective target for cancer intervention. Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Cell Biosci 10 39 (2020)
  8. IAPs: Modular regulators of cell signalling. Budhidarmo R, Day CL. Semin Cell Dev Biol 39 80-90 (2015)
  9. Probing ubiquitin and SUMO conjugation and deconjugation. Ovaa H, Vertegaal ACO. Biochem Soc Trans 46 423-436 (2018)
  10. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Khago D, Fucci IJ, Byrd RA. Molecules 25 E5933 (2020)
  11. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Front Immunol 13 793610 (2022)

Articles citing this publication (59)

  1. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. Mol Cell 62 121-136 (2016)
  2. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Hira A, Yoshida K, Sato K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Shimamoto A, Tahara H, Ito E, Kojima S, Kurumizaka H, Ogawa S, Takata M, Yabe H, Yabe M. Am J Hum Genet 96 1001-1007 (2015)
  3. Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, Grace CRR, Frye JJ, Qiao R, Dube P, Petzold G, Cho SE, Alsharif O, Bao J, Davidson IF, Zheng JJ, Nourse A, Kurinov I, Peters JM, Stark H, Schulman BA. Mol Cell 56 246-260 (2014)
  4. Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nozawa K, Schneider TR, Cramer P. Nature 545 248-251 (2017)
  5. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U. PLoS Pathog 9 e1003121 (2013)
  6. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Lewis MJ, Vyse S, Shields AM, Boeltz S, Gordon PA, Spector TD, Lehner PJ, Walczak H, Vyse TJ. Am J Hum Genet 96 221-234 (2015)
  7. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. Fiesel FC, Moussaud-Lamodière EL, Ando M, Springer W. J Cell Sci 127 3488-3504 (2014)
  8. Intrinsic disorder drives N-terminal ubiquitination by Ube2w. Vittal V, Shi L, Wenzel DM, Scaglione KM, Duncan ED, Basrur V, Elenitoba-Johnson KS, Baker D, Paulson HL, Brzovic PS, Klevit RE. Nat Chem Biol 11 83-89 (2015)
  9. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Kristariyanto YA, Choi SY, Rehman SA, Ritorto MS, Campbell DG, Morrice NA, Toth R, Kulathu Y. Biochem J 467 345-352 (2015)
  10. Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. French ME, Klosowiak JL, Aslanian A, Reed SI, Yates JR, Hunter T. J Biol Chem 292 10398-10413 (2017)
  11. The N-terminal extension of UBE2E ubiquitin-conjugating enzymes limits chain assembly. Schumacher FR, Wilson G, Day CL. J Mol Biol 425 4099-4111 (2013)
  12. Ubiquitin-specific protease 7 is a regulator of ubiquitin-conjugating enzyme UbE2E1. Sarkari F, Wheaton K, La Delfa A, Mohamed M, Shaikh F, Khatun R, Arrowsmith CH, Frappier L, Saridakis V, Sheng Y. J Biol Chem 288 16975-16985 (2013)
  13. Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled. Mund T, Graeb M, Mieszczanek J, Gammons M, Pelham HR, Bienz M. Open Biol 5 150185 (2015)
  14. A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. Polge C, Cabantous S, Deval C, Claustre A, Hauvette A, Bouchenot C, Aniort J, Béchet D, Combaret L, Attaix D, Taillandier D. J Cachexia Sarcopenia Muscle 9 129-145 (2018)
  15. The MALDI-TOF E2/E3 Ligase Assay as Universal Tool for Drug Discovery in the Ubiquitin Pathway. De Cesare V, Johnson C, Barlow V, Hastie J, Knebel A, Trost M. Cell Chem Biol 25 1117-1127.e4 (2018)
  16. Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila. Quaile AT, Urbanus ML, Stogios PJ, Nocek B, Skarina T, Ensminger AW, Savchenko A. Structure 23 1459-1469 (2015)
  17. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Bett JS, Ritorto MS, Ewan R, Jaffray EG, Virdee S, Chin JW, Knebel A, Kurz T, Trost M, Tatham MH, Hay RT. Biochem J 466 489-498 (2015)
  18. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize. Jue D, Sang X, Lu S, Dong C, Zhao Q, Chen H, Jia L. PLoS One 10 e0143488 (2015)
  19. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery. Schelpe J, Monté D, Dewitte F, Sixma TK, Rucktooa P. J Biol Chem 291 630-639 (2016)
  20. Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. Romero-Barrios N, Monachello D, Dolde U, Wong A, San Clemente H, Cayrel A, Johnson A, Lurin C, Vert G. Plant Cell 32 123-138 (2020)
  21. KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation. Hong JH, Kaustov L, Coyaud E, Srikumar T, Wan J, Arrowsmith C, Raught B. Mol Cell Proteomics 14 674-685 (2015)
  22. UbE2E1/UBCH6 Is a Critical in Vivo E2 for the PRC1-catalyzed Ubiquitination of H2A at Lys-119. Wheaton K, Sarkari F, Stanly Johns B, Davarinejad H, Egorova O, Kaustov L, Raught B, Saridakis V, Sheng Y. J Biol Chem 292 2893-2902 (2017)
  23. CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Gandini MA, Henríquez DR, Grimaldo L, Sandoval A, Altier C, Zamponi GW, Felix R, González-Billault C. Pflugers Arch 466 2113-2126 (2014)
  24. Crystal Structure of a Ube2S-Ubiquitin Conjugate. Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J. PLoS One 11 e0147550 (2016)
  25. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. Morreale FE, Bortoluzzi A, Chaugule VK, Arkinson C, Walden H, Ciulli A. J Med Chem 60 4093-4098 (2017)
  26. Allosteric mechanism for site-specific ubiquitination of FANCD2. Chaugule VK, Arkinson C, Rennie ML, Kämäräinen O, Toth R, Walden H. Nat Chem Biol 16 291-301 (2020)
  27. Activity-Based Probes for HECT E3 Ubiquitin Ligases. Byrne R, Mund T, Licchesi JDF. Chembiochem 18 1415-1427 (2017)
  28. Biochemical and structural characterization of the ubiquitin-conjugating enzyme UBE2W reveals the formation of a noncovalent homodimer. Vittal V, Wenzel DM, Brzovic PS, Klevit RE. Cell Biochem Biophys 67 103-110 (2013)
  29. Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Hill S, Harrison JS, Lewis SM, Kuhlman B, Kleiger G. Mol Cell Biol 36 1720-1732 (2016)
  30. Modeling oblong proteins and water-mediated interfaces with RosettaDock in CAPRI rounds 28-35. Marze NA, Jeliazkov JR, Roy Burman SS, Boyken SE, DiMaio F, Gray JJ. Proteins 85 479-486 (2017)
  31. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Šarčević B. Cell Cycle 12 1732-1744 (2013)
  32. Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity. Ries LK, Sander B, Deol KK, Letzelter MA, Strieter ER, Lorenz S. J Biol Chem 294 6113-6129 (2019)
  33. E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2. Anandapadamanaban M, Kyriakidis NC, Csizmók V, Wallenhammar A, Espinosa AC, Ahlner A, Round AR, Trewhella J, Moche M, Wahren-Herlenius M, Sunnerhagen M. J Biol Chem 294 11404-11419 (2019)
  34. Mind the Metal: A Fragment Library-Derived Zinc Impurity Binds the E2 Ubiquitin-Conjugating Enzyme Ube2T and Induces Structural Rearrangements. Morreale FE, Testa A, Chaugule VK, Bortoluzzi A, Ciulli A, Walden H. J Med Chem 60 8183-8191 (2017)
  35. Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis of the Gene Expression in Laticifers on the Basis of Latex Flow in Rubber Tree (Hevea brasiliensis Muell. Arg.). Chao J, Yang S, Chen Y, Tian WM. Front Plant Sci 7 1149 (2016)
  36. Hepatitis C Virus Downregulates Ubiquitin-Conjugating Enzyme E2S Expression To Prevent Proteasomal Degradation of NS5A, Leading to Host Cells More Sensitive to DNA Damage. Pham HT, Nguyen TTT, Nguyen LP, Han SS, Lim YS, Hwang SB. J Virol 93 e01240-18 (2019)
  37. The deubiquitinase TRABID stabilizes the K29/K48-specific E3 ubiquitin ligase HECTD1. Harris LD, Le Pen J, Scholz N, Mieszczanek J, Vaughan N, Davis S, Berridge G, Kessler BM, Bienz M, Licchesi JDF. J Biol Chem 296 100246 (2021)
  38. Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya. Jue D, Sang X, Shu B, Liu L, Wang Y, Jia Z, Zou Y, Shi S. PLoS One 12 e0171357 (2017)
  39. EBV-Associated Cancer and Autoimmunity: Searching for Therapies. Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. Vaccines (Basel) 3 74-89 (2015)
  40. Structural and Functional Analysis of Ubiquitin-based Inhibitors That Target the Backsides of E2 Enzymes. Garg P, Ceccarelli DF, Keszei AFA, Kurinov I, Sicheri F, Sidhu SS. J Mol Biol 432 952-966 (2020)
  41. Dimerization regulates the human APC/C-associated ubiquitin-conjugating enzyme UBE2S. Liess AKL, Kucerova A, Schweimer K, Schlesinger D, Dybkov O, Urlaub H, Mansfeld J, Lorenz S. Sci Signal 13 eaba8208 (2020)
  42. Integrated bioinformatic analysis identifies UBE2Q1 as a potential prognostic marker for high grade serous ovarian cancer. Topno R, Singh I, Kumar M, Agarwal P. BMC Cancer 21 220 (2021)
  43. Oncogenic Activities Of UBE2S Mediated By VHL/HIF-1α/STAT3 Signal Via The Ubiquitin-Proteasome System In PDAC. Wang L, Liang Y, Li P, Liang Q, Sun H, Xu D, Hu W. Onco Targets Ther 12 9767-9781 (2019)
  44. An E2-guided E3 Screen Identifies the RNF17-UBE2U Pair as Regulator of the Radiosensitivity, Immunodeficiency, Dysmorphic Features, and Learning Difficulties (RIDDLE) Syndrome Protein RNF168. Guo Y, An L, Ng HM, Sy SM, Huen MS. J Biol Chem 292 967-978 (2017)
  45. The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: Mass spectrometry offers a cautionary "tail". Hong JH, Ng D, Srikumar T, Raught B. Proteomics 15 2910-2915 (2015)
  46. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels. Grimaldo L, Sandoval A, Garza-López E, Felix R. PLoS One 12 e0185289 (2017)
  47. The S. Typhi effector StoD is an E3/E4 ubiquitin ligase which binds K48- and K63-linked diubiquitin. McDowell MA, Byrne AM, Mylona E, Johnson R, Sagfors A, Crepin VF, Lea S, Frankel G. Life Sci Alliance 2 e201800272 (2019)
  48. Biochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties. Qi C, Li DF, Feng L, Hou Y, Sun H, Wang DC, Liu W. Sci Rep 5 16056 (2015)
  49. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. EMBO J 41 e108823 (2022)
  50. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold. Ivanov SM, Cawley A, Huber RG, Bond PJ, Warwicker J. PLoS One 12 e0185928 (2017)
  51. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Int J Mol Sci 22 11379 (2021)
  52. Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Vreven T, Pierce BG, Borrman TM, Weng Z. Proteins 85 408-416 (2017)
  53. Mechanism of client selection by the protein quality-control factor UBE2O. Yip MCJ, Sedor SF, Shao S. Nat Struct Mol Biol 29 774-780 (2022)
  54. Protein disorder: wagging a tail at ubiquitin. Mittag T, Marzahn MR. Nat Chem Biol 11 7-8 (2015)
  55. 14-3-3 proteins regulate cullin 7-mediated Eag1 degradation. Hsieh CH, Chou CC, Fang YC, Hsu PH, Chiu YH, Yang CS, Jow GM, Tang CY, Jeng CJ. Cell Biosci 13 18 (2023)
  56. AKTIP loss is enriched in ERα-positive breast cancer for tumorigenesis and confers endocrine resistance. Ng ASN, Zhang S, Mak VCY, Zhou Y, Yuen Y, Sharma R, Lu Y, Zhuang G, Zhao W, Pang HH, Cheung LWT. Cell Rep 41 111821 (2022)
  57. Diverse roles of UBE2T in cancer (Review). Ma N, Li Z, Yan J, Liu X, He L, Xie R, Lu X. Oncol Rep 49 69 (2023)
  58. Leishmania infantum UBC1 in Metacyclic Promastigotes from Phlebotomus perniciosus, a Vaccine Candidate for Zoonotic Visceral Leishmaniasis. Larraga J, Alcolea PJ, Alonso AM, Martins LTC, Moreno I, Domínguez M, Larraga V. Vaccines (Basel) 10 231 (2022)
  59. Monitoring HECT Ubiquitination Activity In Vitro. Taibi V, Polo S, Maspero E. Methods Mol Biol 2602 81-92 (2023)


Related citations provided by authors (1)