1xdq Citations

Structural and biochemical identification of a novel bacterial oxidoreductase.

J Biol Chem 279 50391-400 (2004)
Cited: 58 times
EuropePMC logo PMID: 15355966

Abstract

By using a bioinformatics screen of the Escherichia coli genome for potential molybdenum-containing enzymes, we have identified a novel oxidoreductase conserved in the majority of Gram-negative bacteria. The identified operon encodes for a proposed heterodimer, YedYZ in Escherichia coli, consisting of a soluble catalytic subunit termed YedY, which is likely anchored to the membrane by a heme-containing trans-membrane subunit termed YedZ. YedY is uniquely characterized by the presence of one molybdenum molybdopterin not conjugated by an additional nucleotide, and it represents the only molybdoenzyme isolated from E. coli characterized by the presence of this cofactor form. We have further characterized the catalytic subunit YedY in both the molybdenum- and tungsten-substituted forms by using crystallographic analysis. YedY is very distinct in overall architecture from all known bacterial reductases but does show some similarity with the catalytic domain of the eukaryotic chicken liver sulfite oxidase. However, the strictly conserved residues involved in the metal coordination sphere and in the substrate binding pocket of YedY are strikingly different from that of chicken liver sulfite oxidase, suggesting a catalytic activity more in keeping with a reductase than that of a sulfite oxidase. Preliminary kinetic analysis of YedY with a variety of substrates supports our proposal that YedY and its many orthologues may represent a new type of membrane-associated bacterial reductase.

Reviews - 1xdq mentioned but not cited (6)

  1. The mononuclear molybdenum enzymes. Hille R, Hall J, Basu P. Chem Rev 114 3963-4038 (2014)
  2. Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Workun GJ, Moquin K, Rothery RA, Weiner JH. Microbiol Mol Biol Rev 72 228-48, table of contents (2008)
  3. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Zhong Q, Kobe B, Kappler U. Front Microbiol 11 615860 (2020)
  4. Urea-aromatic interactions in biology. Raghunathan S, Jaganade T, Priyakumar UD. Biophys Rev 12 65-84 (2020)
  5. Coumarin-piperazine derivatives as biologically active compounds. Ostrowska K. Saudi Pharm J 28 220-232 (2020)
  6. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. Struwe MA, Scheidig AJ, Clement B. J Biol Chem 299 105306 (2023)

Articles - 1xdq mentioned but not cited (4)

  1. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme. Adamson H, Simonov AN, Kierzek M, Rothery RA, Weiner JH, Bond AM, Parkin A. Proc Natl Acad Sci U S A 112 14506-14511 (2015)
  2. Addressing Ligand-Based Redox in Molybdenum-Dependent Methionine Sulfoxide Reductase. Ingersol LJ, Yang J, Kc K, Pokhrel A, Astashkin AV, Weiner JH, Johnston CA, Kirk ML. J Am Chem Soc 142 2721-2725 (2020)
  3. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Adamson H, Bond AM, Parkin A. Chem Commun (Camb) 53 9519-9533 (2017)
  4. research-article Control of Biofilm Formation by an Agrobacterium tumefaciens Pterin-Binding Periplasmic Protein Conserved Among Pathogenic Bacteria. Greenwich JL, Eagan JL, Feirer N, Boswinkle K, Minasov G, Shuvalova L, Inniss NL, Raghavaiah J, Ghosh AK, Satchell KJF, Allen KD, Fuqua C. bioRxiv 2023.11.18.567607 (2023)


Reviews citing this publication (11)

  1. Oxidative stress, protein damage and repair in bacteria. Ezraty B, Gennaris A, Barras F, Collet JF. Nat Rev Microbiol 15 385-396 (2017)
  2. How to make a living from anaerobic ammonium oxidation. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT. FEMS Microbiol Rev 37 428-461 (2013)
  3. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Iobbi-Nivol C, Leimkühler S. Biochim Biophys Acta 1827 1086-1101 (2013)
  4. Bacterial molybdoenzymes: old enzymes for new purposes. Leimkühler S, Iobbi-Nivol C. FEMS Microbiol Rev 40 1-18 (2016)
  5. The molybdenum oxotransferases and related enzymes. Hille R. Dalton Trans 42 3029-3042 (2013)
  6. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. Maia LB, Moura JJ. J Biol Inorg Chem 20 403-433 (2015)
  7. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. Rothery RA, Weiner JH. J Biol Inorg Chem 20 349-372 (2015)
  8. Inferring pathways leading to organic-sulfur mineralization in the Bacillales. Santana MM, Gonzalez JM, Clara MI. Crit Rev Microbiol 42 31-45 (2016)
  9. Methionine Sulfoxide Reductases of Archaea. Maupin-Furlow JA. Antioxidants (Basel) 7 E124 (2018)
  10. Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers. Kirk ML, Hille R. Molecules 27 4802 (2022)
  11. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Magalon A. Molecules 28 7195 (2023)

Articles citing this publication (37)

  1. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A. Genome Res 15 1325-1335 (2005)
  2. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Wang S, Deng K, Zaremba S, Deng X, Lin C, Wang Q, Tortorello ML, Zhang W. Appl Environ Microbiol 75 6110-6123 (2009)
  3. A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Drew D, Slotboom DJ, Friso G, Reda T, Genevaux P, Rapp M, Meindl-Beinker NM, Lambert W, Lerch M, Daley DO, Van Wijk KJ, Hirst J, Kunji E, De Gier JW. Protein Sci 14 2011-2017 (2005)
  4. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Gennaris A, Ezraty B, Henry C, Agrebi R, Vergnes A, Oheix E, Bos J, Leverrier P, Espinosa L, Szewczyk J, Vertommen D, Iranzo O, Collet JF, Barras F. Nature 528 409-412 (2015)
  5. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria. Leimkühler S, Wuebbens MM, Rajagopalan KV. Coord Chem Rev 255 1129-1144 (2011)
  6. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D. Mol Microbiol 89 872-886 (2013)
  7. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Hitchcock A, Hall SJ, Myers JD, Mulholland F, Jones MA, Kelly DJ. Microbiology (Reading) 156 2994-3010 (2010)
  8. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli. Neumann M, Mittelstädt G, Iobbi-Nivol C, Saggu M, Lendzian F, Hildebrandt P, Leimkühler S. FEBS J 276 2762-2774 (2009)
  9. MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. Neumann M, Mittelstädt G, Seduk F, Iobbi-Nivol C, Leimkühler S. J Biol Chem 284 21891-21898 (2009)
  10. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. Nat Commun 12 2454 (2021)
  11. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Smart JP, Cliff MJ, Kelly DJ. Mol Microbiol 74 742-757 (2009)
  12. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function. Kozmin SG, Schaaper RM. Mutat Res 619 9-15 (2007)
  13. ACRATA: a novel electron transfer domain associated to apoptosis and cancer. Sanchez-Pulido L, Rojas AM, Valencia A, Martinez-A C, Andrade MA. BMC Cancer 4 98 (2004)
  14. Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. Sabaty M, Grosse S, Adryanczyk G, Boiry S, Biaso F, Arnoux P, Pignol D. BMC Biochem 14 28 (2013)
  15. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich Peptide and methionine sulfoxide reductase. Melnyk RA, Youngblut MD, Clark IC, Carlson HK, Wetmore KM, Price MN, Iavarone AT, Deutschbauer AM, Arkin AP, Coates JD. mBio 6 e00233-15 (2015)
  16. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP. Juillan-Binard C, Picciocchi A, Andrieu JP, Dupuy J, Petit-Hartlein I, Caux-Thang C, Vivès C, Nivière V, Fieschi F. J Biol Chem 292 2485-2494 (2017)
  17. EchoLOCATION: an in silico analysis of the subcellular locations of Escherichia coli proteins and comparison with experimentally derived locations. Horler RS, Butcher A, Papangelopoulos N, Ashton PD, Thomas GH. Bioinformatics 25 163-166 (2009)
  18. Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. D'Errico G, Di Salle A, La Cara F, Rossi M, Cannio R. J Bacteriol 188 694-701 (2006)
  19. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Pontel LB, Scampoli NL, Porwollik S, Checa SK, McClelland M, Soncini FC. Microbiology (Reading) 160 1659-1669 (2014)
  20. What matters in chronic Burkholderia cenocepacia infection in cystic fibrosis: Insights from comparative genomics. Nunvar J, Capek V, Fiser K, Fila L, Drevinek P. PLoS Pathog 13 e1006762 (2017)
  21. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection. Dhouib R, Othman DS, Lin V, Lai XJ, Wijesinghe HG, Essilfie AT, Davis A, Nasreen M, Bernhardt PV, Hansbro PM, McEwan AG, Kappler U. Front Microbiol 7 1743 (2016)
  22. Spectroscopic characterization of YedY: the role of sulfur coordination in a Mo(V) sulfite oxidase family enzyme form. Yang J, Rothery R, Sempombe J, Weiner JH, Kirk ML. J Am Chem Soc 131 15612-15614 (2009)
  23. The molybdoproteome of Starkeya novella--insights into the diversity and functions of molybdenum containing proteins in response to changing growth conditions. Kappler U, Nouwens AS. Metallomics 5 325-334 (2013)
  24. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Lu M, Jiao S, Gao E, Song X, Li Z, Hao X, Rensing C, Wei G. Appl Environ Microbiol 83 e01244-17 (2017)
  25. Transposon and deletion mutagenesis of genes involved in perchlorate reduction in Azospira suillum PS. Melnyk RA, Clark IC, Liao A, Coates JD. mBio 5 e00769-13 (2013)
  26. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment. Yu M, Tang K, Liu J, Shi X, Gulder TA, Zhang XH. BMC Genomics 14 707 (2013)
  27. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S. BMC Genomics 16 383 (2015)
  28. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Kirk ML, Kc K. Met Ions Life Sci 20 /books/9783110589757/9783110589757-015/97831105897 (2020)
  29. NarJ subfamily system specific chaperone diversity and evolution is directed by respiratory enzyme associations. Bay DC, Chan CS, Turner RJ. BMC Evol Biol 15 110 (2015)
  30. Population differentiation of Rhodobacteraceae along with coral compartments. Luo D, Wang X, Feng X, Tian M, Wang S, Tang SL, Ang P, Yan A, Luo H. ISME J 15 3286-3302 (2021)
  31. Structural insight into SoxC and SoxD interaction and their role in electron transport process in the novel global sulfur cycle in Paracoccus pantotrophus. Bagchi A, Roy P. Biochem Biophys Res Commun 331 1107-1113 (2005)
  32. Methionine oxidation under anaerobic conditions in Escherichia coli. Loiseau L, Vergnes A, Ezraty B. Mol Microbiol 118 387-402 (2022)
  33. Active site architecture reveals coordination sphere flexibility and specificity determinants in a group of closely related molybdoenzymes. Struwe MA, Kalimuthu P, Luo Z, Zhong Q, Ellis D, Yang J, Khadanand KC, Harmer JR, Kirk ML, McEwan AG, Clement B, Bernhardt PV, Kobe B, Kappler U. J Biol Chem 296 100672 (2021)
  34. Short communication: Homologous expression of recombinant and native thurincin H in an engineered natural producer. Wang G, Manns DC, Guron GK, Churey JJ, Worobo RW. J Dairy Sci 97 4120-4126 (2014)
  35. YedY: A Mononuclear Molybdenum Enzyme with a Redox-Active Ligand? Lee CC, Sickerman NS, Hu Y, Ribbe MW. Chembiochem 17 453-455 (2016)
  36. Exclusively membrane-inserted state of an uncleavable Tat precursor protein suggests lateral transfer into the bilayer from the translocon. Ren C, Patel R, Robinson C. FEBS J 280 3354-3364 (2013)
  37. A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Sun W, Xu Y, Liang Y, Yu Q, Gao H. Appl Environ Microbiol 89 e0110823 (2023)