1xck Citations

Crystal structure of wild-type chaperonin GroEL.

J Mol Biol 354 940-51 (2005)
Cited: 56 times
EuropePMC logo PMID: 16288915

Abstract

The 2.9A resolution crystal structure of apo wild-type GroEL was determined for the first time and represents the reference structure, facilitating the study of structural and functional differences observed in GroEL variants. Until now the crystal structure of the mutant Arg13Gly, Ala126Val GroEL was used for this purpose. We show that, due to the mutations as well as to the presence of a crystallographic symmetry, the ring-ring interface was inaccurately described. Analysis of the present structure allowed the definition of structural elements at this interface, essential for understanding the inter-ring allosteric signal transmission. We also show unambiguously that there is no ATP-induced 102 degrees rotation of the apical domain helix I around its helical axis, as previously assumed in the crystal structure of the (GroEL-KMgATP)(14) complex, and analyze the apical domain movements. These results enabled us to compare our structure with other GroEL crystal structures already published, allowing us to suggest a new route through which the allosteric signal for negative cooperativity propagates within the molecule. The proposed mechanism, supported by known mutagenesis data, underlines the importance of the switching of salt bridges.

Reviews - 1xck mentioned but not cited (3)

  1. Selective targeting of the stress chaperome as a therapeutic strategy. Taldone T, Ochiana SO, Patel PD, Chiosis G. Trends Pharmacol Sci 35 592-603 (2014)
  2. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Zhao Q, Liu C. Front Mol Biosci 4 98 (2017)
  3. Macromolecular structure modeling from 3D EM using VolRover 2.0. Zhang Q, Bettadapura R, Bajaj C. Biopolymers 97 709-731 (2012)

Articles - 1xck mentioned but not cited (32)

  1. RELION: implementation of a Bayesian approach to cryo-EM structure determination. Scheres SH. J Struct Biol 180 519-530 (2012)
  2. A Bayesian view on cryo-EM structure determination. Scheres SH. J Mol Biol 415 406-418 (2012)
  3. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC. J Struct Biol 170 427-438 (2010)
  4. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. Birmanns S, Rusu M, Wriggers W. J Struct Biol 173 428-435 (2011)
  5. Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy. Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM. Angew Chem Int Ed Engl 55 15905-15909 (2016)
  6. Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. Pintilie G, Chiu W. Biopolymers 97 742-760 (2012)
  7. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Proc Natl Acad Sci U S A 114 8259-8264 (2017)
  8. Simultaneous Determination of Protein Structure and Dynamics Using Cryo-Electron Microscopy. Bonomi M, Pellarin R, Vendruscolo M. Biophys J 114 1604-1613 (2018)
  9. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution. Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH. Proc Natl Acad Sci U S A 110 E2958-66 (2013)
  10. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. Cossio P, Hummer G. J Struct Biol 184 427-437 (2013)
  11. Biomolecular pleiomorphism probed by spatial interpolation of coarse models. Rusu M, Birmanns S, Wriggers W. Bioinformatics 24 2460-2466 (2008)
  12. Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. Skjaerven L, Grant B, Muga A, Teigen K, McCammon JA, Reuter N, Martinez A. PLoS Comput Biol 7 e1002004 (2011)
  13. Numerical geometry of map and model assessment. Wriggers W, He J. J Struct Biol 192 255-261 (2015)
  14. Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein. Wälti MA, Schmidt T, Murray DT, Wang H, Hinshaw JE, Clore GM. Proc Natl Acad Sci U S A 114 9104-9109 (2017)
  15. Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics. Kovacs JA, Galkin VE, Wriggers W. BMC Struct Biol 18 12 (2018)
  16. Cryo-EM structure of human mitochondrial HSPD1. Klebl DP, Feasey MC, Hesketh EL, Ranson NA, Wurdak H, Sobott F, Bon RS, Muench SP. iScience 24 102022 (2021)
  17. Structural insight into the cooperation of chloroplast chaperonin subunits. Zhang S, Zhou H, Yu F, Bai C, Zhao Q, He J, Liu C. BMC Biol 14 29 (2016)
  18. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity. Bywater RP. PLoS One 10 e0119306 (2015)
  19. Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations. Sliozberg Y, Abrams CF. Biophys J 93 1906-1916 (2007)
  20. Probing the Interaction of Huntingtin Exon-1 Polypeptides with the Chaperonin Nanomachine GroEL. Wälti MA, Kotler SA, Clore GM. Chembiochem 22 1985-1991 (2021)
  21. Use of thallium to identify monovalent cation binding sites in GroEL. Kiser PD, Lorimer GH, Palczewski K. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 967-971 (2009)
  22. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions. Kiser PD, Lodowski DT, Palczewski K. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 457-461 (2007)
  23. Structure and conformational cycle of a bacteriophage-encoded chaperonin. Bracher A, Paul SS, Wang H, Wischnewski N, Hartl FU, Hayer-Hartl M. PLoS One 15 e0230090 (2020)
  24. The GroEL chaperonin: a protein machine with pistons driven by ATP binding and hydrolysis. Lorimer GH, Fei X, Ye X. Philos Trans R Soc Lond B Biol Sci 373 20170179 (2018)
  25. Role of denatured-state properties in chaperonin action probed by single-molecule spectroscopy. Hofmann H, Hillger F, Delley C, Hoffmann A, Pfeil SH, Nettels D, Lipman EA, Schuler B. Biophys J 107 2891-2902 (2014)
  26. Maintaining and Enhancing Diversity of Sampled Protein Conformations in Robotics-Inspired Methods. Abella JR, Moll M, Kavraki LE. J Comput Biol 25 3-20 (2018)
  27. Disassembly/reassembly strategy for the production of highly pure GroEL, a tetradecameric supramolecular machine, suitable for quantitative NMR, EPR and mutational studies. Wälti MA, Clore GM. Protein Expr Purif 142 8-15 (2018)
  28. research-article Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature. Ren GG, Kong L, Liu J, Zhang M, Lu Z, Xue H, Ren A, Liu J, Li J, Ling WL. Res Sq rs.3.rs-2464569 (2023)
  29. Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature. Kong L, Liu J, Zhang M, Lu Z, Xue H, Ren A, Liu J, Li J, Ling WL, Ren G. Nat Commun 14 5641 (2023)
  30. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. J Phys Chem Lett 14 6513-6521 (2023)
  31. NMR spectroscopy, excited states and relevance to problems in cell biology - transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease. Clore GM. J Cell Sci 135 jcs258695 (2022)
  32. research-article Single-molecule 3D imaging of HIV cellular entry by liquid-phase electron tomography. Kong L, Liu J, Zhang M, Lu Z, Ren A, Liu J, Li J, Ren GG. Res Sq rs.3.rs-1298112 (2022)


Reviews citing this publication (7)

  1. Phospholipase D: enzymology, functionality, and chemical modulation. Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Chem Rev 111 6064-6119 (2011)
  2. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  3. Dynamics, flexibility, and allostery in molecular chaperonins. Skjærven L, Cuellar J, Martinez A, Valpuesta JM. FEBS Lett 589 2522-2532 (2015)
  4. The complexity of chloroplast chaperonins. Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. Trends Plant Sci 18 688-694 (2013)
  5. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Weiss C, Jebara F, Nisemblat S, Azem A. Front Mol Biosci 3 80 (2016)
  6. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Iizuka R, Funatsu T. Biophys Physicobiol 13 63-69 (2016)
  7. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Front Bioinform 1 788308 (2021)

Articles citing this publication (14)

  1. Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Abrams CF, Vanden-Eijnden E. Proc Natl Acad Sci U S A 107 4961-4966 (2010)
  2. Single particle analysis based on Zernike phase contrast transmission electron microscopy. Danev R, Nagayama K. J Struct Biol 161 211-218 (2008)
  3. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Skjaerven L, Martinez A, Reuter N. Proteins 79 232-243 (2011)
  4. Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis. Danziger O, Shimon L, Horovitz A. Protein Sci 15 1270-1276 (2006)
  5. Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy. Nishida N, Motojima F, Idota M, Fujikawa H, Yoshida M, Shimada I, Kato K. J Biochem 140 591-598 (2006)
  6. Structural and functional conservation of Mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 Is a chaperonin. Sielaff B, Lee KS, Tsai FT. J Mol Biol 405 831-839 (2011)
  7. The Cpn10(1) co-chaperonin of A. thaliana functions only as a hetero-oligomer with Cpn20. Vitlin Gruber A, Zizelski G, Azem A, Weiss C. PLoS One 9 e113835 (2014)
  8. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PM. Environ Microbiol 13 2232-2249 (2011)
  9. Temperature Regulates Stability, Ligand Binding (Mg2+ and ATP), and Stoichiometry of GroEL-GroES Complexes. Walker TE, Shirzadeh M, Sun HM, McCabe JW, Roth A, Moghadamchargari Z, Clemmer DE, Laganowsky A, Rye H, Russell DH. J Am Chem Soc 144 2667-2678 (2022)
  10. GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. Chilukoti N, Kumar CM, Mande SC. J Bacteriol 198 486-497 (2016)
  11. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Skjaerven L, Muga A, Reuter N, Martinez A. Proteins 80 2333-2346 (2012)
  12. Evaluation and Characterization of the Insecticidal Activity and Synergistic Effects of Different GroEL Proteins from Bacteria Associated with Entomopathogenic Nematodes on Galleria mellonella. Rivera-Ramírez A, Salgado-Morales R, Onofre-Lemus J, García-Gómez BI, Lanz-Mendoza H, Dantán-González E. Toxins (Basel) 15 623 (2023)
  13. Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 Bacillus subtilis. Sokolova OS, Pichkur EB, Maslova ES, Kurochkina LP, Semenyuk PI, Konarev PV, Samygina VR, Stanishneva-Konovalova TB. Biomedicines 10 2347 (2022)
  14. Novel convergence-oriented approach for evaluation and optimization of workflow in single-particle two-dimensional averaging of electron microscope images. Moriya T, Mio K, Sato C. Microscopy (Oxf) 62 491-513 (2013)