1niw Citations

Structural basis for endothelial nitric oxide synthase binding to calmodulin.

EMBO J 22 766-75 (2003)
Cited: 102 times
EuropePMC logo PMID: 12574113

Abstract

The enzyme nitric oxide synthase (NOS) is exquisitely regulated in vivo by the Ca(2+) sensor protein calmodulin (CaM) to control production of NO, a key signaling molecule and cytotoxin. The differential activation of NOS isozymes by CaM has remained enigmatic, despite extensive research. Here, the crystallographic structure of Ca(2+)-loaded CaM bound to a 20 residue peptide comprising the endothelial NOS (eNOS) CaM-binding region establishes their individual conformations and intermolecular interactions, and suggests the basis for isozyme-specific differences. The alpha-helical eNOS peptide binds in an antiparallel orientation to CaM through extensive hydrophobic interactions. Unique NOS interactions occur with: (i). the CaM flexible central linker, explaining its importance in NOS activation; and (ii). the CaM C-terminus, explaining the NOS-specific requirement for a bulky, hydrophobic residue at position 144. This binding mode expands mechanisms for CaM-mediated activation, explains eNOS deactivation by Thr495 phosphorylation, and implicates specific hydrophobic residues in the Ca(2+) independence of inducible NOS.

Reviews - 1niw mentioned but not cited (1)

  1. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Bignon E, Rizza S, Filomeni G, Papaleo E. Comput Struct Biotechnol J 17 415-429 (2019)

Articles - 1niw mentioned but not cited (21)

  1. Assessment of helical interfaces in protein-protein interactions. Jochim AL, Arora PS. Mol Biosyst 5 924-926 (2009)
  2. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. Xia C, Misra I, Iyanagi T, Kim JJ. J. Biol. Chem. 284 30708-30717 (2009)
  3. Transient, sparsely populated compact states of apo and calcium-loaded calmodulin probed by paramagnetic relaxation enhancement: interplay of conformational selection and induced fit. Anthis NJ, Doucleff M, Clore GM. J. Am. Chem. Soc. 133 18966-18974 (2011)
  4. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Ataman ZA, Gakhar L, Sorensen BR, Hell JW, Shea MA. Structure 15 1603-1617 (2007)
  5. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Feng C. Coord Chem Rev 256 393-411 (2012)
  6. Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. Xu Q, Chang A, Tolia A, Minor DL. J. Mol. Biol. 425 378-394 (2013)
  7. Calmodulin regulates Ca2+-sensing receptor-mediated Ca2+ signaling and its cell surface expression. Huang Y, Zhou Y, Wong HC, Castiblanco A, Chen Y, Brown EM, Yang JJ. J. Biol. Chem. 285 35919-35931 (2010)
  8. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes. Wu G, Berka V, Tsai AL. J. Inorg. Biochem. 105 1226-1237 (2011)
  9. Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation. Das A, Chakrabarti J, Ghosh M. Biophys. J. 104 1274-1284 (2013)
  10. Retention of conformational entropy upon calmodulin binding to target peptides is driven by transient salt bridges. Smith DM, Straatsma TP, Squier TC. Biophys. J. 103 1576-1584 (2012)
  11. Conformational diversity analysis reveals three functional mechanisms in proteins. Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SC, Parisi G. PLoS Comput. Biol. 13 e1005398 (2017)
  12. Conformational heterogeneity of the calmodulin binding interface. Shukla D, Peck A, Pande VS. Nat Commun 7 10910 (2016)
  13. Multi-state design of flexible proteins predicts sequences optimal for conformational change. Sauer MF, Sevy AM, Crowe JE, Meiler J. PLoS Comput Biol 16 e1007339 (2020)
  14. Re-evaluation of the model-free analysis of fast internal motion in proteins using NMR relaxation. Frederick KK, Sharp KA, Warischalk N, Wand AJ. J Phys Chem B 112 12095-12103 (2008)
  15. Tyrosine nitration on calmodulin enhances calcium-dependent association and activation of nitric-oxide synthase. Porter JJ, Jang HS, Haque MM, Stuehr DJ, Mehl RA. J Biol Chem 295 2203-2211 (2020)
  16. The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Wu PR, Chen BR, Hsieh CC, Lin WC, Wu KK, Hwu Y, Chen PF. Biosci. Rep. 34 (2014)
  17. A Study on the Mechanism of Milkvetch Root in the Treatment of Diabetic Nephropathy Based on Network Pharmacology. Piao C, Zhang Q, Jin, Wang L, Tang C, Zhang N, Lian F, Tong X. Evid Based Complement Alternat Med 2020 6754761 (2020)
  18. Glycation of calmodulin binding domain of iNOS may increase the chance of occurrence of tuberculosis in chronic diabetic state. Bhattacharyya R, Banerjee D. Bioinformation 7 324-327 (2011)
  19. Positional Distributions of the Tethered Modules in Nitric Oxide Synthase: Monte Carlo Calculations and Pulsed EPR Measurements. Astashkin AV, Li J, Zheng H, Feng C. J Phys Chem A 123 7075-7086 (2019)
  20. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Z, Zheng J, Reep D, Broussard GJ, Tsang A, Tsegaye G, Narayan S, Obara CJ, Lim JX, Patel R, Zhang R, Ahrens MB, Turner GC, Wang SS, Korff WL, Schreiter ER, Svoboda K, Hasseman JP, Kolb I, Looger LL. Nature 615 884-891 (2023)
  21. Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds. Dong J, Li D, Kang L, Luo C, Wang J. Biophys Rep 9 159-175 (2023)


Reviews citing this publication (20)

  1. Dynamic personalities of proteins. Henzler-Wildman K, Kern D. Nature 450 964-972 (2007)
  2. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Yamniuk AP, Vogel HJ. Mol. Biotechnol. 27 33-57 (2004)
  3. Molecular mechanisms underlying the activation of eNOS. Fleming I. Pflugers Arch. 459 793-806 (2010)
  4. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J. 280 5551-5565 (2013)
  5. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. Stuehr DJ, Tejero J, Haque MM. FEBS J. 276 3959-3974 (2009)
  6. Bacterial nitric oxide synthases: what are they good for? Sudhamsu J, Crane BR. Trends Microbiol. 17 212-218 (2009)
  7. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Iyanagi T, Xia C, Kim JJ. Arch. Biochem. Biophys. 528 72-89 (2012)
  8. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D. Sci Signal 9 re2 (2016)
  9. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Perry JJ, Fan L, Tainer JA. Neuroscience 145 1280-1299 (2007)
  10. Endothelial nitric oxide synthase in the microcirculation. Shu X, Keller TC, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Cell. Mol. Life Sci. 72 4561-4575 (2015)
  11. The many structural faces of calmodulin: a multitasking molecular jackknife. Kursula P. Amino Acids 46 2295-2304 (2014)
  12. Flavin-containing heme enzymes. Mowat CG, Gazur B, Campbell LP, Chapman SK. Arch. Biochem. Biophys. 493 37-52 (2010)
  13. Endothelial caveolar subcellular domain regulation of endothelial nitric oxide synthase. Ramadoss J, Pastore MB, Magness RR. Clin. Exp. Pharmacol. Physiol. 40 753-764 (2013)
  14. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. J. Inorg. Biochem. 130 130-140 (2014)
  15. P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A, Umapathy NS, Kotamarthi J, Gokhale YS, Karoor V, Stenmark KR, Gerasimovskaya E. Int J Mol Sci 21 E6855 (2020)
  16. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson REK, Fajardo VA. Curr Neuropharmacol 21 891-910 (2023)
  17. Toxin bioportides: exploring toxin biological activity and multifunctionality. Kerkis I, de Brandão Prieto da Silva AR, Pompeia C, Tytgat J, de Sá Junior PL. Cell. Mol. Life Sci. 74 647-661 (2017)
  18. Navigating Calcium and Reactive Oxygen Species by Natural Flavones for the Treatment of Heart Failure. Yu T, Huang D, Wu H, Chen H, Chen S, Cui Q. Front Pharmacol 12 718496 (2021)
  19. Targeting Soluble Guanylyl Cyclase during Ischemia and Reperfusion. Mace EH, Kimlinger MJ, Billings FT, Lopez MG. Cells 12 1903 (2023)
  20. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Hum Cell 35 37-50 (2022)

Articles citing this publication (60)

  1. Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA, Getzoff ED. J. Biol. Chem. 279 37918-37927 (2004)
  2. The role of conformational entropy in molecular recognition by calmodulin. Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ. Nat. Chem. Biol. 6 352-358 (2010)
  3. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Ikura M, Ames JB. Proc. Natl. Acad. Sci. U.S.A. 103 1159-1164 (2006)
  4. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M, Mukhopadhyay D, Folkman J. Cancer Cell 7 251-261 (2005)
  5. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L. Plant Cell 22 3816-3830 (2010)
  6. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED. Nat. Chem. Biol. 4 700-707 (2008)
  7. Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase. Astashkin AV, Elmore BO, Fan W, Guillemette JG, Feng C. J. Am. Chem. Soc. 132 12059-12067 (2010)
  8. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. Lau SY, Procko E, Gaudet R. J. Gen. Physiol. 140 541-555 (2012)
  9. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Park JH, Jin YM, Hwang S, Cho DH, Kang DH, Jo I. Nitric Oxide 32 36-42 (2013)
  10. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras. Newman E, Spratt DE, Mosher J, Cheyne B, Montgomery HJ, Wilson DL, Weinberg JB, Smith SM, Salerno JC, Ghosh DK, Guillemette JG. J. Biol. Chem. 279 33547-33557 (2004)
  11. FK506 binding protein 12/12.6 depletion increases endothelial nitric oxide synthase threonine 495 phosphorylation and blood pressure. Long C, Cook LG, Hamilton SL, Wu GY, Mitchell BM. Hypertension 49 569-576 (2007)
  12. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. Knudsen GM, Nishida CR, Mooney SD, Ortiz de Montellano PR. J. Biol. Chem. 278 31814-31824 (2003)
  13. Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A. J. Biol. Chem. 284 11892-11899 (2009)
  14. Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. J Biol Chem 281 34333-34340 (2006)
  15. C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase. Tiso M, Konas DW, Panda K, Garcin ED, Sharma M, Getzoff ED, Stuehr DJ. J Biol Chem 280 39208-39219 (2005)
  16. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Jiang JG, Chen RJ, Xiao B, Yang S, Wang JN, Wang Y, Cowart LA, Xiao X, Wang DW, Xia Y. Prostaglandins Other Lipid Mediat. 82 162-174 (2007)
  17. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family. Contessa GM, Orsale M, Melino S, Torre V, Paci M, Desideri A, Cicero DO. J. Biomol. NMR 31 185-199 (2005)
  18. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions. DuBay KH, Geissler PL. J. Mol. Biol. 391 484-497 (2009)
  19. Domain swapping and different oligomeric States for the complex between calmodulin and the calmodulin-binding domain of calcineurin a. Majava V, Kursula P. PLoS ONE 4 e5402 (2009)
  20. Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. Trane AE, Pavlov D, Sharma A, Saqib U, Lau K, van Petegem F, Minshall RD, Roman LJ, Bernatchez PN. J. Biol. Chem. 289 13273-13283 (2014)
  21. Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. Dasgupta S, Hu X, Keizers PH, Liu WM, Luchinat C, Nagulapalli M, Overhand M, Parigi G, Sgheri L, Ubbink M. J. Biomol. NMR 51 253-263 (2011)
  22. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs. Spratt DE, Newman E, Mosher J, Ghosh DK, Salerno JC, Guillemette JG. FEBS J. 273 1759-1771 (2006)
  23. Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. Greif DM, Sacks DB, Michel T. Proc. Natl. Acad. Sci. U.S.A. 101 1165-1170 (2004)
  24. Phosphorylation within an autoinhibitory domain in endothelial nitric oxide synthase reduces the Ca(2+) concentrations required for calmodulin to bind and activate the enzyme. Tran QK, Leonard J, Black DJ, Persechini A. Biochemistry 47 7557-7566 (2008)
  25. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. Juranic N, Atanasova E, Filoteo AG, Macura S, Prendergast FG, Penniston JT, Strehler EE. J. Biol. Chem. 285 4015-4024 (2010)
  26. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Evans TI, Shea MA. Proteins 76 47-61 (2009)
  27. Ginsenoside Rb1 reverses H2O2-induced senescence in human umbilical endothelial cells: involvement of eNOS pathway. Liu DH, Chen YM, Liu Y, Hao BS, Zhou B, Wu L, Wang M, Chen L, Wu WK, Qian XX. J. Cardiovasc. Pharmacol. 59 222-230 (2012)
  28. Regulation of interdomain electron transfer in the NOS output state for NO production. Feng C, Tollin G. Dalton Trans 6692-6700 (2009)
  29. A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides. Ganoth A, Friedman R, Nachliel E, Gutman M. Biophys. J. 91 2436-2450 (2006)
  30. Bioportide: an emergent concept of bioactive cell-penetrating peptides. Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninová J, Ostenson CG, Zorko M, Ostlund P, Kumar S, Langel U, McKeating J, Jones S. Cell. Mol. Life Sci. 69 2951-2966 (2012)
  31. Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective. Astashkin AV, Chen L, Zhou X, Li H, Poulos TL, Liu KJ, Guillemette JG, Feng C. J Phys Chem A 118 6864-6872 (2014)
  32. The use of ESI-MS to probe the binding of divalent cations to calmodulin. Shirran SL, Barran PE. J. Am. Soc. Mass Spectrom. 20 1159-1171 (2009)
  33. Nitric-oxide synthase forms N-NO-pterin and S-NO-cys: implications for activity, allostery, and regulation. Rosenfeld RJ, Bonaventura J, Szymczyna BR, MacCoss MJ, Arvai AS, Yates JR, Tainer JA, Getzoff ED. J. Biol. Chem. 285 31581-31589 (2010)
  34. Neuropsychiatric Symptoms of COVID-19 Explained by SARS-CoV-2 Proteins' Mimicry of Human Protein Interactions. Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Front Hum Neurosci 15 656313 (2021)
  35. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L. Gene 521 32-37 (2013)
  36. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS. Shirran S, Garnaud P, Daff S, McMillan D, Barran P. J R Soc Interface 2 465-476 (2005)
  37. A novel trans conformation of ligand-free calmodulin. Kumar V, Chichili VP, Tang X, Sivaraman J. PLoS ONE 8 e54834 (2013)
  38. Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase. Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, Bowie JH. FEBS J. 274 1778-1784 (2007)
  39. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. Irene D, Huang JW, Chung TY, Li FY, Tzen JT, Lin TH, Chyan CL. J. Biomol. Struct. Dyn. 31 414-425 (2013)
  40. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase. Li W, Fan W, Chen L, Elmore BO, Piazza M, Guillemette JG, Feng C. J. Biol. Inorg. Chem. 17 675-685 (2012)
  41. A general framework to characterize inhibitors of calmodulin: use of calmodulin inhibitors to study the interaction between calmodulin and its calmodulin binding domains. Audran E, Dagher R, Gioria S, Tsvetkov PO, Kulikova AA, Didier B, Villa P, Makarov AA, Kilhoffer MC, Haiech J. Biochim. Biophys. Acta 1833 1720-1731 (2013)
  42. Prediction of three dimensional structure of calmodulin. Chen K, Ruan J, Kurgan LA. Protein J. 25 57-70 (2006)
  43. Pulsed ENDOR determination of the arginine location in the ferrous-NO form of neuronal NOS. Astashkin AV, Elmore BO, Chen L, Fan W, Guillemette JG, Feng C. J Phys Chem A 116 6731-6739 (2012)
  44. Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide. Cook AG, Johnson LN, McDonnell JM. FEBS J. 272 1511-1522 (2005)
  45. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics. Murphy AJ, Kemp F, Love J. Anal. Biochem. 376 61-72 (2008)
  46. Thermodynamics of apocalmodulin and nitric oxide synthase II peptide interaction. Censarek P, Beyermann M, Koch KW. FEBS Lett. 577 465-468 (2004)
  47. A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Herling TW, O'Connell DJ, Bauer MC, Persson J, Weininger U, Knowles TP, Linse S. Biophys. J. 110 1957-1966 (2016)
  48. Lobe-specific calcium binding in calmodulin regulates endothelial nitric oxide synthase activation. Wu PR, Kuo CC, Yet SF, Liou JY, Wu KK, Chen PF. PLoS ONE 7 e39851 (2012)
  49. Binding studies of nNOS-active amphibian peptides and Ca2+ calmodulin, using negative ion electrospray ionisation mass spectrometry. Pukala TL, Urathamakul T, Watt SJ, Beck JL, Jackway RJ, Bowie JH. Rapid Commun. Mass Spectrom. 22 3501-3509 (2008)
  50. Label-Free, In-Solution Screening of Peptide Libraries for Binding to Protein Targets Using Hydrogen Exchange Mass Spectrometry. Maaty WS, Weis DD. J. Am. Chem. Soc. 138 1335-1343 (2016)
  51. Pulsed ENDOR determination of relative orientation of g-frame and molecular frame of imidazole-coordinated heme center of iNOS. Astashkin AV, Fan W, Elmore BO, Guillemette JG, Feng C. J Phys Chem A 115 10345-10352 (2011)
  52. Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide. Ganoth A, Nachliel E, Friedman R, Gutman M. Proteins 64 133-146 (2006)
  53. Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM. Chen PF, Wu KK. Arch. Biochem. Biophys. 486 132-140 (2009)
  54. Dephosphorylation of eNOS on Thr495 after transient forebrain ischemia in gerbil hippocampus. Hashiguchi A, Yano S, Morioka M, Hamada J, Kochi M, Fukunaga K. Brain Res. Mol. Brain Res. 133 317-319 (2005)
  55. Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. Zippel N, Loot AE, Stingl H, Randriamboavonjy V, Fleming I, Fisslthaler B. Int J Mol Sci 19 (2018)
  56. Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Costas-Ferreira C, Faro LRF. Int J Mol Sci 22 8413 (2021)
  57. Traditional Chinese medicine's intervention in endothelial nitric oxide synthase activation and nitric oxide synthesis in cardiovascular system. Zhu JQ, Song WS, Hu Z, Ye QF, Liang YB, Kang LY. Chin J Integr Med (2015)
  58. Letter Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Cell Mol Biol Lett 28 21 (2023)
  59. Structures of calmodulin-melittin complexes show multiple binding modes lacking classical anchoring interactions. Dürvanger Z, Juhász T, Liliom K, Harmat V. J Biol Chem 299 104596 (2023)
  60. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Chyan CL, Irene D, Lin SM. Molecules 22 (2017)