1n56 Citations

Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts.

Mol Cell 13 751-62 (2004)
Related entries: 1s0n, 1s0o, 1s10

Cited: 122 times
EuropePMC logo PMID: 15023344

Abstract

Dpo4 from S. Solfataricus, a DinB-like Y family polymerase, efficiently replicates DNA past an abasic lesion. We have determined crystal structures of Dpo4 complexed with five different abasic site-containing DNA substrates and find that translesion synthesis is template directed with the abasic site looped out and the incoming nucleotide is opposite the base 5' to the lesion. The ensuing DNA synthesis generates a -1 frameshift when the abasic site remains extrahelical. Template realignment during primer extension is also observed, resulting in base substitutions or even +1 frameshifts. In the case of a +1 frameshift, the extra nucleotide is accommodated in the solvent-exposed minor groove. In addition, the structure of an unproductive Dpo4 ternary complex suggests that the flexible little finger domain facilitates DNA orientation and translocation during translesion synthesis.

Articles - 1n56 mentioned but not cited (2)

  1. RNA aptamers selected against DNA polymerase beta inhibit the polymerase activities of DNA polymerases beta and kappa. Gening LV, Klincheva SA, Reshetnjak A, Grollman AP, Miller H. Nucleic Acids Res 34 2579-2586 (2006)
  2. Translesion DNA Synthesis. Vaisman A, McDonald JP, Woodgate R. EcoSal Plus 5 (2012)


Reviews citing this publication (20)

  1. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Sale JE, Lehmann AR, Woodgate R. Nat Rev Mol Cell Biol 13 141-152 (2012)
  2. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Yang W, Lee JY, Nowotny M. Mol Cell 22 5-13 (2006)
  3. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. McCulloch SD, Kunkel TA. Cell Res 18 148-161 (2008)
  4. Translesion DNA polymerases. Goodman MF, Woodgate R. Cold Spring Harb Perspect Biol 5 a010363 (2013)
  5. Mechanism of a genetic glissando: structural biology of indel mutations. Garcia-Diaz M, Kunkel TA. Trends Biochem Sci 31 206-214 (2006)
  6. Archaeal DNA replication and repair. Kelman Z, White MF. Curr Opin Microbiol 8 669-676 (2005)
  7. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Yang W. Biochemistry 53 2793-2803 (2014)
  8. Controlling mutation: intervening in evolution as a therapeutic strategy. Cirz RT, Romesberg FE. Crit Rev Biochem Mol Biol 42 341-354 (2007)
  9. Structural diversity of the Y-family DNA polymerases. Pata JD. Biochim Biophys Acta 1804 1124-1135 (2010)
  10. Portraits of a Y-family DNA polymerase. Yang W. FEBS Lett 579 868-872 (2005)
  11. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Zahn KE, Wallace SS, Doublié S. Curr Opin Struct Biol 21 358-369 (2011)
  12. Functions of the major abasic endonuclease (APE1) in cell viability and genotoxin resistance. McNeill DR, Whitaker AM, Stark WJ, Illuzzi JL, McKinnon PJ, Freudenthal BD, Wilson DM. Mutagenesis 35 27-38 (2020)
  13. DNA adduct structure-function relationships: comparing solution with polymerase structures. Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. Chem Res Toxicol 21 45-52 (2008)
  14. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W, Xu J, Chong J, Wang D. DNA Repair (Amst) 71 43-55 (2018)
  15. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. Liu B, Xue Q, Tang Y, Cao J, Guengerich FP, Zhang H. Mutat Res Rev Mutat Res 768 53-67 (2016)
  16. Biological roles of translesion synthesis DNA polymerases in eubacteria. Andersson DI, Koskiniemi S, Hughes D. Mol Microbiol 77 540-548 (2010)
  17. Translesion DNA synthesis: little fingers teach tolerance. Fleck O, Schär P. Curr Biol 14 R389-91 (2004)
  18. DNA polymerases β and λ and their roles in cell. Belousova EA, Lavrik OI. DNA Repair (Amst) 29 112-126 (2015)
  19. Chemical synthesis of oligonucleotides containing damaged bases for biological studies. Iwai S. Nucleosides Nucleotides Nucleic Acids 25 561-582 (2006)
  20. Establishing Linkages Among DNA Damage, Mutagenesis, and Genetic Diseases. Basu AK, Essigmann JM. Chem Res Toxicol 35 1655-1675 (2022)

Articles citing this publication (100)

  1. What a difference a decade makes: insights into translesion DNA synthesis. Yang W, Woodgate R. Proc Natl Acad Sci U S A 104 15591-15598 (2007)
  2. Structure and mechanism of human DNA polymerase eta. Biertümpfel C, Zhao Y, Kondo Y, Ramón-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W. Nature 465 1044-1048 (2010)
  3. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. Nowotny M, Yang W. EMBO J 25 1924-1933 (2006)
  4. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. Plosky BS, Vidal AE, Fernández de Henestrosa AR, McLenigan MP, McDonald JP, Mead S, Woodgate R. EMBO J 25 2847-2855 (2006)
  5. Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. Vaisman A, Ling H, Woodgate R, Yang W. EMBO J 24 2957-2967 (2005)
  6. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. Rechkoblit O, Malinina L, Cheng Y, Kuryavyi V, Broyde S, Geacintov NE, Patel DJ. PLoS Biol 4 e11 (2006)
  7. Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure 13 1569-1577 (2005)
  8. Structural insight into translesion synthesis by DNA Pol II. Wang F, Yang W. Cell 139 1279-1289 (2009)
  9. Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1. Choi JY, Lim S, Kim EJ, Jo A, Guengerich FP. J Mol Biol 404 34-44 (2010)
  10. Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. Wong JH, Fiala KA, Suo Z, Ling H. J Mol Biol 379 317-330 (2008)
  11. A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment. Bauer J, Xing G, Yagi H, Sayer JM, Jerina DM, Ling H. Proc Natl Acad Sci U S A 104 14905-14910 (2007)
  12. Replication through an abasic DNA lesion: structural basis for adenine selectivity. Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W, Marx A. EMBO J 29 1738-1747 (2010)
  13. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Xing G, Kirouac K, Shin YJ, Bell SD, Ling H. Mol Microbiol 71 678-691 (2009)
  14. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase iota. Kirouac KN, Ling H. EMBO J 28 1644-1654 (2009)
  15. DNA polymerase beta substrate specificity: side chain modulation of the "A-rule". Beard WA, Shock DD, Batra VK, Pedersen LC, Wilson SH. J Biol Chem 284 31680-31689 (2009)
  16. MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. Mol Cell 20 155-166 (2005)
  17. Base excision repair intermediates are mutagenic in mammalian cells. Simonelli V, Narciso L, Dogliotti E, Fortini P. Nucleic Acids Res 33 4404-4411 (2005)
  18. DNA oligonucleotides with A, T, G or C opposite an abasic site: structure and dynamics. Chen J, Dupradeau FY, Case DA, Turner CJ, Stubbe J. Nucleic Acids Res 36 253-262 (2008)
  19. Mechanism of template-independent nucleotide incorporation catalyzed by a template-dependent DNA polymerase. Fiala KA, Brown JA, Ling H, Kshetry AK, Zhang J, Taylor JS, Yang W, Suo Z. J Mol Biol 365 590-602 (2007)
  20. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Wilson RC, Pata JD. Mol Cell 29 767-779 (2008)
  21. A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. Dorjsuren D, Wilson DM, Beard WA, McDonald JP, Austin CP, Woodgate R, Wilson SH, Simeonov A. Nucleic Acids Res 37 e128 (2009)
  22. Base-displaced intercalated structure of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme, a hotspot for -2 bp deletions. Wang F, DeMuro NE, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. J Am Chem Soc 128 10085-10095 (2006)
  23. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling. Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK. PLoS Genet 12 e1005835 (2016)
  24. A comprehensive comparison of DNA replication past 2-deoxyribose and its tetrahydrofuran analog in Escherichia coli. Kroeger KM, Goodman MF, Greenberg MM. Nucleic Acids Res 32 5480-5485 (2004)
  25. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. Patra A, Zhang Q, Lei L, Su Y, Egli M, Guengerich FP. J Biol Chem 290 8028-8038 (2015)
  26. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts. Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. J Biol Chem 284 3563-3576 (2009)
  27. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. Chu X, Liu F, Maxwell BA, Wang Y, Suo Z, Wang H, Han W, Wang J. PLoS Comput Biol 10 e1003804 (2014)
  28. Kinetic analysis of correct nucleotide insertion by a Y-family DNA polymerase reveals conformational changes both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. Beckman JW, Wang Q, Guengerich FP. J Biol Chem 283 36711-36723 (2008)
  29. DNA synthesis across an abasic lesion by human DNA polymerase iota. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure 17 530-537 (2009)
  30. Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Wang Y, Schlick T. J Am Chem Soc 130 13240-13250 (2008)
  31. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Wang W, Walmacq C, Chong J, Kashlev M, Wang D. Proc Natl Acad Sci U S A 115 E2538-E2545 (2018)
  32. A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT. Mol Cell 24 245-255 (2006)
  33. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. Wong JH, Brown JA, Suo Z, Blum P, Nohmi T, Ling H. EMBO J 29 2059-2069 (2010)
  34. Structure and activity of Y-class DNA polymerase DPO4 from Sulfolobus solfataricus with templates containing the hydrophobic thymine analog 2,4-difluorotoluene. Irimia A, Eoff RL, Pallan PS, Guengerich FP, Egli M. J Biol Chem 282 36421-36433 (2007)
  35. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Rechkoblit O, Malinina L, Cheng Y, Geacintov NE, Broyde S, Patel DJ. Structure 17 725-736 (2009)
  36. DNA synthesis across an abasic lesion by yeast REV1 DNA polymerase. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. J Mol Biol 406 18-28 (2011)
  37. Mechanistic studies of the bypass of a bulky single-base lesion catalyzed by a Y-family DNA polymerase. Sherrer SM, Brown JA, Pack LR, Jasti VP, Fowler JD, Basu AK, Suo Z. J Biol Chem 284 6379-6388 (2009)
  38. Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs. McDonald JP, Hall A, Gasparutto D, Cadet J, Ballantyne J, Woodgate R. Nucleic Acids Res 34 1102-1111 (2006)
  39. Translesion synthesis of abasic sites by yeast DNA polymerase epsilon. Sabouri N, Johansson E. J Biol Chem 284 31555-31563 (2009)
  40. DNA sequence modulates the conformation of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme. Wang F, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. Biochemistry 46 8498-8516 (2007)
  41. Y-family polymerase conformation is a major determinant of fidelity and translesion specificity. Wilson RC, Jackson MA, Pata JD. Structure 21 20-31 (2013)
  42. A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Wang L, Broyde S. Nucleic Acids Res 34 785-795 (2006)
  43. Co-mutagenic activity of arsenic and benzo[a]pyrene in mouse skin. Fischer JM, Robbins SB, Al-Zoughool M, Kannamkumarath SS, Stringer SL, Larson JS, Caruso JA, Talaska G, Stambrook PJ, Stringer JR. Mutat Res 588 35-46 (2005)
  44. Translesion synthesis past the C8- and N2-deoxyguanosine adducts of the dietary mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline in the NarI recognition sequence by prokaryotic DNA polymerases. Stover JS, Chowdhury G, Zang H, Guengerich FP, Rizzo CJ. Chem Res Toxicol 19 1506-1517 (2006)
  45. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. Lee CH, Chandani S, Loechler EL. J Mol Graph Model 25 87-102 (2006)
  46. The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. Wu Y, Wilson RC, Pata JD. J Bacteriol 193 2630-2636 (2011)
  47. Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4. Eoff RL, Sanchez-Ponce R, Guengerich FP. J Biol Chem 284 21090-21099 (2009)
  48. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase. Obeid S, Welte W, Diederichs K, Marx A. J Biol Chem 287 14099-14108 (2012)
  49. Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι. McIntyre J, Vidal AE, McLenigan MP, Bomar MG, Curti E, McDonald JP, Plosky BS, Ohashi E, Woodgate R. Nucleic Acids Res 41 1649-1660 (2013)
  50. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity. Obeid S, Schnur A, Gloeckner C, Blatter N, Welte W, Diederichs K, Marx A. Chembiochem 12 1574-1580 (2011)
  51. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides. Kroeger KM, Kim J, Goodman MF, Greenberg MM. Biochemistry 45 5048-5056 (2006)
  52. Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Wang Y, Arora K, Schlick T. Protein Sci 15 135-151 (2006)
  53. Biochemical analysis of active site mutations of human polymerase η. Suarez SC, Beardslee RA, Toffton SM, McCulloch SD. Mutat Res 745-746 46-54 (2013)
  54. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. Sakofsky CJ, Foster PL, Grogan DW. DNA Repair (Amst) 11 391-400 (2012)
  55. Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium. Koskiniemi S, Andersson DI. Proc Natl Acad Sci U S A 106 10248-10253 (2009)
  56. Multiple solutions to inefficient lesion bypass by T7 DNA polymerase. McCulloch SD, Kunkel TA. DNA Repair (Amst) 5 1373-1383 (2006)
  57. Structural basis of accurate replication beyond a bulky major benzo[a]pyrene adduct by human DNA polymerase kappa. Jha V, Ling H. DNA Repair (Amst) 49 43-50 (2017)
  58. Contribution of partial charge interactions and base stacking to the efficiency of primer extension at and beyond abasic sites in DNA. Xia S, Vashishtha A, Bulkley D, Eom SH, Wang J, Konigsberg WH. Biochemistry 51 4922-4931 (2012)
  59. UmuD(2) inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs. Foti JJ, Delucia AM, Joyce CM, Walker GC. J Biol Chem 285 23086-23095 (2010)
  60. Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Segovia R, Shen Y, Lujan SA, Jones SJ, Stirling PC. Proc Natl Acad Sci U S A 114 2663-2668 (2017)
  61. Identification of an unfolding intermediate for a DNA lesion bypass polymerase. Sherrer SM, Maxwell BA, Pack LR, Fiala KA, Fowler JD, Zhang J, Suo Z. Chem Res Toxicol 25 1531-1540 (2012)
  62. Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies. Zhang L, Rechkoblit O, Wang L, Patel DJ, Shapiro R, Broyde S. Nucleic Acids Res 34 3326-3337 (2006)
  63. Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and Sulfolobus solfataricus P2 Polymerase IV. Patra A, Banerjee S, Johnson Salyard TL, Malik CK, Christov PP, Rizzo CJ, Stone MP, Egli M. J Am Chem Soc 137 7011-7014 (2015)
  64. Structural mechanism of replication stalling on a bulky amino-polycyclic aromatic hydrocarbon DNA adduct by a y family DNA polymerase. Kirouac KN, Basu AK, Ling H. J Mol Biol 425 4167-4176 (2013)
  65. Differential temperature-dependent multimeric assemblies of replication and repair polymerases on DNA increase processivity. Lin HK, Chase SF, Laue TM, Jen-Jacobson L, Trakselis MA. Biochemistry 51 7367-7382 (2012)
  66. Investigation of Intradomain Motions of a Y-Family DNA Polymerase during Substrate Binding and Catalysis. Raper AT, Suo Z. Biochemistry 55 5832-5844 (2016)
  67. Molecular and structural characterization of disease-associated APE1 polymorphisms. Whitaker AM, Stark WJ, Flynn TS, Freudenthal BD. DNA Repair (Amst) 91-92 102867 (2020)
  68. Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases. Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP. J Mol Biol 392 251-269 (2009)
  69. Translesion Synthesis DNA Polymerase Kappa Is Indispensable for DNA Repair Synthesis in Cisplatin Exposed Dorsal Root Ganglion Neurons. Zhuo M, Gorgun MF, Englander EW. Mol Neurobiol 55 2506-2515 (2018)
  70. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Xu P, Oum L, Lee YC, Geacintov NE, Broyde S. Biochemistry 48 4677-4690 (2009)
  71. Comparison of the in vitro replication of the 7-(2-oxoheptyl)-1,N2-etheno-2'-deoxyguanosine and 1,N2-etheno-2'-deoxyguanosine lesions by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Christov PP, Petrova KV, Shanmugam G, Kozekov ID, Kozekova A, Guengerich FP, Stone MP, Rizzo CJ. Chem Res Toxicol 23 1330-1341 (2010)
  72. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV. DeCarlo L, Gowda AS, Suo Z, Spratt TE. Biochemistry 47 8157-8164 (2008)
  73. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase. Gadkari VV, Tokarsky EJ, Malik CK, Basu AK, Suo Z. DNA Repair (Amst) 21 65-77 (2014)
  74. Mutagenic potential of hypoxanthine in live human cells. DeVito S, Woodrick J, Song L, Roy R. Mutat Res 803-805 9-16 (2017)
  75. NMR investigation of DNA primer-template models: structural insights into dislocation mutagenesis in DNA replication. Chi LM, Lam SL. FEBS Lett 580 6496-6500 (2006)
  76. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. Phadnis N, Mehta R, Meednu N, Sia EA. DNA Repair (Amst) 5 829-839 (2006)
  77. Quantitative analysis of the mutagenic potential of 1-aminopyrene-DNA adduct bypass catalyzed by Y-family DNA polymerases. Sherrer SM, Taggart DJ, Pack LR, Malik CK, Basu AK, Suo Z. Mutat Res 737 25-33 (2012)
  78. The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase θ. Laverty DJ, Averill AM, Doublié S, Greenberg MM. ACS Chem Biol 12 1584-1592 (2017)
  79. In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ. Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T. DNA Repair (Amst) 15 21-28 (2014)
  80. Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4. Chandani S, Loechler EL. J Mol Graph Model 25 658-670 (2007)
  81. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana. Kashiwagi S, Kuraoka I, Fujiwara Y, Hitomi K, Cheng QJ, Fuss JO, Shin DS, Masutani C, Tainer JA, Hanaoka F, Iwai S. J Nucleic Acids 2010 701472 (2010)
  82. Characterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea. Cranford MT, Chu AM, Baguley JK, Bauer RJ, Trakselis MA. Nucleic Acids Res 45 8329-8340 (2017)
  83. Frameshift deletion by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W is selective for purines and involves normal conformational change followed by slow phosphodiester bond formation. Zhang H, Beckman JW, Guengerich FP. J Biol Chem 284 35144-35153 (2009)
  84. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Lim S, Song I, Guengerich FP, Choi JY. Chem Res Toxicol 25 1699-1707 (2012)
  85. Impact of 1,N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. Ghodke PP, Guengerich FP. J Biol Chem 295 6092-6107 (2020)
  86. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Sakofsky CJ, Grogan DW. Genetics 201 513-523 (2015)
  87. Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A. Lin LJ, Yoshinaga A, Lin Y, Guzman C, Chen YH, Mei S, Lagunas AM, Koike S, Iwai S, Spies MA, Nair SK, Mackie RI, Ishino Y, Cann IK. J Mol Biol 397 13-30 (2010)
  88. Cytosine unstacking and strand slippage at an insertion-deletion mutation sequence in an overhang-containing DNA duplex. Manjari SR, Pata JD, Banavali NK. Biochemistry 53 3807-3816 (2014)
  89. Implications for damage recognition during Dpo4-mediated mutagenic bypass of m1G and m3C lesions. Rechkoblit O, Delaney JC, Essigmann JM, Patel DJ. Structure 19 821-832 (2011)
  90. Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. Chu X, Suo Z, Wang J. Elife 9 e60434 (2020)
  91. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Jung H, Lee S. Biochem J 477 2859-2871 (2020)
  92. The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction. Zhai B, DuPrez K, Han X, Yuan Z, Ahmad S, Xu C, Gu L, Ni J, Fan L, Shen Y. Nucleic Acids Res 46 6627-6641 (2018)
  93. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases. Xie P. Theor Biol Med Model 8 22 (2011)
  94. Binding-Induced Conformational Changes Involved in Sliding Clamp PCNA and DNA Polymerase DPO4. Chu WT, Suo Z, Wang J. iScience 23 101117 (2020)
  95. Backbone assignment of the binary complex of the full length Sulfolobus solfataricus DNA polymerase IV and DNA. Lee E, Fowler JD, Suo Z, Wu Z. Biomol NMR Assign 11 39-43 (2017)
  96. Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass. Feng X, Zhang B, Xu R, Gao Z, Liu X, Yuan G, Ishino S, Feng M, Shen Y, Ishino Y, She Q. Front Microbiol 12 802670 (2021)
  97. A Well-Conserved Archaeal B-Family Polymerase Functions as an Extender in Translesion Synthesis. Feng X, Zhang B, Gao Z, Xu R, Liu X, Ishino S, Feng M, Shen Y, Ishino Y, She Q. mBio 13 e0265921 (2022)
  98. Abasic site-peptide cross-links are blocking lesions repaired by AP endonucleases. Yudkina AV, Bulgakov NA, Kim DV, Baranova SV, Ishchenko AA, Saparbaev MK, Koval VV, Zharkov DO. Nucleic Acids Res 51 6321-6336 (2023)
  99. Identification and Characterization of Thermostable Y-Family DNA Polymerases η, ι, κ and Rev1 From a Lower Eukaryote, Thermomyces lanuginosus. Vaisman A, McDonald JP, Smith MR, Aspelund SL, Evans TC, Woodgate R. Front Mol Biosci 8 778400 (2021)
  100. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. Dasari A, Deodhar T, Berdis AJ. J Mol Biol 429 2308-2323 (2017)


Related citations provided by authors (1)

  1. Error-prone DNA polymerases: novel structures and the benefits of infidelity.. Friedberg EC, Fischhaber PL, Kisker C Cell 107 9-12 (2001)