1in3 Citations

Structure-function analysis of a phage display-derived peptide that binds to insulin-like growth factor binding protein 1.

Biochemistry 40 8487-98 (2001)
Related entries: 1gje, 1gjf, 1gjg, 1imw, 1in2

Cited: 25 times
EuropePMC logo PMID: 11456486

Abstract

Highly structured, peptide antagonists of the interaction between insulin-like growth factor 1 (IGF-I) and IGF binding protein 1 (IGFBP-1) have recently been discovered by phage display of naïve peptide libraries [Lowman, H. B., et al. (1998) Biochemistry 37, 8870--8878]. We now report a detailed analysis of the features of this turn-helix peptide motif that are necessary for IGFBP-1 binding and structural integrity. Further rounds of phage randomization indicate the importance of residues contributing to a hydrophobic patch on one face of the helix. Alanine-scanning substitutions confirm that the hydrophobic residues are necessary for binding. However, structural analysis by NMR spectroscopy indicates that some of these analogues are less well folded. Structured, high-affinity analogues that lack the disulfide bond were prepared by introducing a covalent constraint between side chains at positions i and i + 7 or i + 8 within the helix. Analogues based on this scaffold demonstrate that a helical conformation is present in the bound state, and that hydrophobic side chains in this helix, and residues immediately preceding it, interact with IGFBP-1. By comparison of alanine scanning data for IGF-I and the turn-helix peptide, we propose a model for common surface features of these molecules that recognize IGFBP-1.

Articles - 1in3 mentioned but not cited (2)

  1. PEP-FOLD: an online resource for de novo peptide structure prediction. Maupetit J, Derreumaux P, Tuffery P. Nucleic Acids Res. 37 W498-503 (2009)
  2. Generalized pattern search algorithm for Peptide structure prediction. Nicosia G, Stracquadanio G. Biophys J 95 4988-4999 (2008)


Reviews citing this publication (8)

  1. Unraveling hot spots in binding interfaces: progress and challenges. DeLano WL. Curr. Opin. Struct. Biol. 12 14-20 (2002)
  2. Therapeutic peptides. Lien S, Lowman HB. Trends Biotechnol. 21 556-562 (2003)
  3. Phage display in molecular imaging and diagnosis of cancer. Deutscher SL. Chem. Rev. 110 3196-3211 (2010)
  4. Exploring protein-protein interactions with phage display. Sidhu SS, Fairbrother WJ, Deshayes K. Chembiochem 4 14-25 (2003)
  5. Protein-protein interfaces: mimics and inhibitors. Cochran AG. Curr Opin Chem Biol 5 654-659 (2001)
  6. Current strategies for the development of peptide-based anti-cancer therapeutics. Borghouts C, Kunz C, Groner B. J. Pept. Sci. 11 713-726 (2005)
  7. Survey of the year 2001 commercial optical biosensor literature. Rich RL, Myszka DG. J. Mol. Recognit. 15 352-376 (2002)
  8. Designing scaffolds of peptides for phage display libraries. Uchiyama F, Tanaka Y, Minari Y, Tokui N. J. Biosci. Bioeng. 99 448-456 (2005)

Articles citing this publication (15)

  1. Short constrained peptides that inhibit HIV-1 entry. Sia SK, Carr PA, Cochran AG, Malashkevich VN, Kim PS. Proc. Natl. Acad. Sci. U.S.A. 99 14664-14669 (2002)
  2. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Roy MJ, Vom A, Czabotar PE, Lessene G. Br. J. Pharmacol. 171 1973-1987 (2014)
  3. Analogs of insulin-like peptide 3 (INSL3) B-chain are LGR8 antagonists in vitro and in vivo. Del Borgo MP, Hughes RA, Bathgate RA, Lin F, Kawamura K, Wade JD. J. Biol. Chem. 281 13068-13074 (2006)
  4. Rapid identification of small binding motifs with high-throughput phage display: discovery of peptidic antagonists of IGF-1 function. Deshayes K, Schaffer ML, Skelton NJ, Nakamura GR, Kadkhodayan S, Sidhu SS. Chem. Biol. 9 495-505 (2002)
  5. Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. Pan B, Li B, Russell SJ, Tom JY, Cochran AG, Fairbrother WJ. J. Mol. Biol. 316 769-787 (2002)
  6. Pharmacological disruption of insulin-like growth factor 1 binding to IGF-binding proteins restores anabolic responses in human osteoarthritic chondrocytes. De Ceuninck F, Caliez A, Dassencourt L, Anract P, Renard P. Arthritis Res. Ther. 6 R393-403 (2004)
  7. Novel Bcl-2 homology-3 domain-like sequences identified from screening randomized peptide libraries for inhibitors of the pro-survival Bcl-2 proteins. Lee EF, Fedorova A, Zobel K, Boyle MJ, Yang H, Perugini MA, Colman PM, Huang DC, Deshayes K, Fairlie WD. J. Biol. Chem. 284 31315-31326 (2009)
  8. Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids. Frost JR, Jacob NT, Papa LJ, Owens AE, Fasan R. ACS Chem. Biol. 10 1805-1816 (2015)
  9. A striking periodicity of the cis/trans isomerization of proline imide bonds in cyclic disulfide-bridged peptides. Shi T, Spain SM, Rabenstein DL. Angew. Chem. Int. Ed. Engl. 45 1780-1783 (2006)
  10. Amino acid determinants of beta-hairpin conformation in erythropoeitin receptor agonist peptides derived from a phage display library. Skelton NJ, Russell S, de Sauvage F, Cochran AG. J. Mol. Biol. 316 1111-1125 (2002)
  11. Conformationally constrained single-chain peptide mimics of relaxin B-chain secondary structure. Del Borgo MP, Hughes RA, Wade JD. J. Pept. Sci. 11 564-571 (2005)
  12. Secondary structure, a missing component of sequence-based minimotif definitions. Sargeant DP, Gryk MR, Maciejewski MW, Thapar V, Kundeti V, Rajasekaran S, Romero P, Dunker K, Li SC, Kaneko T, Schiller MR. PLoS ONE 7 e49957 (2012)
  13. Cross-strand interactions of fluorinated amino acids in β-hairpin constructs. Clark GA, Baleja JD, Kumar K. J. Am. Chem. Soc. 134 17912-17921 (2012)
  14. Development of a bacteriophage-based system for the selection of structured peptides. Chockalingam K, Lu HD, Banta S. Anal. Biochem. 388 122-127 (2009)
  15. Novel peptide screened from a phage display library antagonizes the activity of CC chemokine receptor 9. Hu Y, Ma A, Lin S, Yang Y, Hong G. Oncol Lett 14 6471-6476 (2017)


Related citations provided by authors (1)

  1. Molecular mimics of insulin-like growth factor 1 (IGF-1) for inhibiting IGF-1: IGF-binding protein interactions.. Lowman HB, Chen YM, Skelton NJ, Mortensen DL, Tomlinson EE, Sadick MD, Robinson IC, Clark RG Biochemistry 37 8870-8 (1998)