1iil Citations

Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome.

Proc Natl Acad Sci U S A 98 7182-7 (2001)
Cited: 126 times
EuropePMC logo PMID: 11390973

Abstract

Apert syndrome (AS) is characterized by craniosynostosis (premature fusion of cranial sutures) and severe syndactyly of the hands and feet. Two activating mutations, Ser-252 --> Trp and Pro-253 --> Arg, in fibroblast growth factor receptor 2 (FGFR2) account for nearly all known cases of AS. To elucidate the mechanism by which these substitutions cause AS, we determined the crystal structures of these two FGFR2 mutants in complex with fibroblast growth factor 2 (FGF2). These structures demonstrate that both mutations introduce additional interactions between FGFR2 and FGF2, thereby augmenting FGFR2-FGF2 affinity. Moreover, based on these structures and sequence alignment of the FGF family, we propose that the Pro-253 --> Arg mutation will indiscriminately increase the affinity of FGFR2 toward any FGF. In contrast, the Ser-252 --> Trp mutation will selectively enhance the affinity of FGFR2 toward a limited subset of FGFs. These predictions are consistent with previous biochemical data describing the effects of AS mutations on FGF binding. Alterations in FGFR2 ligand affinity and specificity may allow inappropriate autocrine or paracrine activation of FGFR2. Furthermore, the distinct gain-of-function interactions observed in each crystal structure provide a model to explain the phenotypic variability among AS patients.

Reviews - 1iil mentioned but not cited (1)

  1. Reads meet rotamers: structural biology in the age of deep sequencing. Sethi A, Clarke D, Chen J, Kumar S, Galeev TR, Regan L, Gerstein M. Curr Opin Struct Biol 35 125-134 (2015)

Articles - 1iil mentioned but not cited (11)

  1. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Proc Natl Acad Sci U S A 98 7182-7187 (2001)
  2. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Wang L, Park H, Chhim S, Ding Y, Jiang W, Queen C, Kim KJ. Mol Cancer Ther 11 864-872 (2012)
  3. Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation. Clarke D, Sethi A, Li S, Kumar S, Chang RWF, Chen J, Gerstein M. Structure 24 826-837 (2016)
  4. A towering genome: Experimentally validated adaptations to high blood pressure and extreme stature in the giraffe. Liu C, Gao J, Cui X, Li Z, Chen L, Yuan Y, Zhang Y, Mei L, Zhao L, Cai D, Hu M, Zhou B, Li Z, Qin T, Si H, Li G, Lin Z, Xu Y, Zhu C, Yin Y, Zhang C, Xu W, Li Q, Wang K, Gilbert MTP, Heller R, Wang W, Huang J, Qiu Q. Sci Adv 7 eabe9459 (2021)
  5. ARS-interacting multi-functional protein 1 induces proliferation of human bone marrow-derived mesenchymal stem cells by accumulation of β-catenin via fibroblast growth factor receptor 2-mediated activation of Akt. Kim SY, Son WS, Park MC, Kim CM, Cha BH, Yoon KJ, Lee SH, Park SG. Stem Cells Dev 22 2630-2640 (2013)
  6. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines. González AJ, Liao L. BMC Bioinformatics 11 537 (2010)
  7. An inherited FGFR2 mutation increased osteogenesis gene expression and result in Crouzon syndrome. Fan J, Li Y, Jia R, Fan X. BMC Med Genet 19 91 (2018)
  8. Uncovering Mechanisms of Zanthoxylum piperitum Fruits for the Alleviation of Rheumatoid Arthritis Based on Network Pharmacology. Oh K, Adnan M, Cho D. Biology (Basel) 10 703 (2021)
  9. Peptide ligands targeting FGF receptors promote recovery from dorsal root crush injury via AKT/mTOR signaling. Zhao Y, Wang Q, Xie C, Cai Y, Chen X, Hou Y, He L, Li J, Yao M, Chen S, Wu W, Chen X, Hong A. Theranostics 11 10125-10147 (2021)
  10. Isoform-specific inhibition of FGFR signaling achieved by a de-novo-designed mini-protein. Park JS, Choi J, Cao L, Mohanty J, Suzuki Y, Park A, Baker D, Schlessinger J, Lee S. Cell Rep 41 111545 (2022)
  11. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk (Stigma Maydis) against Obesity: A Network Pharmacology Study. Oh KK, Adnan M, Cho DH. Curr Issues Mol Biol 43 1906-1936 (2021)


Reviews citing this publication (35)

  1. Cellular signaling by fibroblast growth factor receptors. Eswarakumar VP, Lax I, Schlessinger J. Cytokine Growth Factor Rev 16 139-149 (2005)
  2. The FGF family: biology, pathophysiology and therapy. Beenken A, Mohammadi M. Nat Rev Drug Discov 8 235-253 (2009)
  3. Structural basis for fibroblast growth factor receptor activation. Mohammadi M, Olsen SK, Ibrahimi OA. Cytokine Growth Factor Rev 16 107-137 (2005)
  4. Advances and challenges in targeting FGFR signalling in cancer. Babina IS, Turner NC. Nat Rev Cancer 17 318-332 (2017)
  5. Fibroblast growth factor signaling in skeletal development and disease. Ornitz DM, Marie PJ. Genes Dev 29 1463-1486 (2015)
  6. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Wilkie AO. Cytokine Growth Factor Rev 16 187-203 (2005)
  7. Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Pellegrini L. Curr Opin Struct Biol 11 629-634 (2001)
  8. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. Am J Med Genet 112 266-278 (2002)
  9. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Belov AA, Mohammadi M. Cold Spring Harb Perspect Biol 5 a015958 (2013)
  10. A Genetic-Pathophysiological Framework for Craniosynostosis. Twigg SR, Wilkie AO. Am J Hum Genet 97 359-377 (2015)
  11. Syndromic craniosynostosis: from history to hydrogen bonds. Cunningham ML, Seto ML, Ratisoontorn C, Heike CL, Hing AV. Orthod Craniofac Res 10 67-81 (2007)
  12. Fibroblast growth factor receptors, developmental corruption and malignant disease. Kelleher FC, O'Sullivan H, Smyth E, McDermott R, Viterbo A. Carcinogenesis 34 2198-2205 (2013)
  13. A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Mohammadi M, Olsen SK, Goetz R. Curr Opin Struct Biol 15 506-516 (2005)
  14. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Cytokine Growth Factor Rev 26 425-449 (2015)
  15. Understanding craniosynostosis as a growth disorder. Flaherty K, Singh N, Richtsmeier JT. Wiley Interdiscip Rev Dev Biol 5 429-459 (2016)
  16. Morphogenesis and dysmorphogenesis of the appendicular skeleton. Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Birth Defects Res C Embryo Today 69 102-122 (2003)
  17. Activator-inhibitor dynamics of vertebrate limb pattern formation. Newman SA, Bhat R. Birth Defects Res C Embryo Today 81 305-319 (2007)
  18. Genetics of craniosynostosis: review of the literature. Ciurea AV, Toader C. J Med Life 2 5-17 (2009)
  19. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. J Clin Med 8 E7 (2018)
  20. Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Czyz M. Cells 8 E540 (2019)
  21. Structural Biology of the FGF7 Subfamily. Zinkle A, Mohammadi M. Front Genet 10 102 (2019)
  22. Altered FGF signalling in congenital craniofacial and skeletal disorders. Moosa S, Wollnik B. Semin Cell Dev Biol 53 115-125 (2016)
  23. Precursor tissue analogs as a tissue-engineering strategy. Nishimura I, Garrell RL, Hedrick M, Iida K, Osher S, Wu B. Tissue Eng 9 Suppl 1 S77-89 (2003)
  24. FGFR2 signaling and the pathogenesis of acne. Melnik B, Schmitz G. J Dtsch Dermatol Ges 6 721-728 (2008)
  25. Targeting fibroblast growth factor pathways in endometrial cancer. Winterhoff B, Konecny GE. Curr Probl Cancer 41 37-47 (2017)
  26. Targeting molecular pathways in endometrial cancer: a focus on the FGFR pathway. Lee PS, Secord AA. Cancer Treat Rev 40 507-512 (2014)
  27. Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment. Clayton NS, Wilson AS, Laurent EP, Grose RP, Carter EP. Dev Dyn 246 493-501 (2017)
  28. FGFR signaling and endocrine resistance in breast cancer: Challenges for the clinical development of FGFR inhibitors. Servetto A, Formisano L, Arteaga CL. Biochim Biophys Acta Rev Cancer 1876 188595 (2021)
  29. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Goodwin AF, Kim R, Bush JO, Klein OD. Curr Top Dev Biol 115 459-492 (2015)
  30. The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. Appadurai R, Uversky VN, Srivastava A. J Membr Biol 252 273-292 (2019)
  31. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Front Chem 10 860985 (2022)
  32. The Role of Fibroblast Growth Factor 10 Signaling in Duodenal Atresia. Jones MLM, Sarila G, Chapuis P, Hutson JM, King SK, Teague WJ. Front Pharmacol 11 250 (2020)
  33. Research advances in Apert syndrome. Das S, Munshi A. J Oral Biol Craniofac Res 8 194-199 (2018)
  34. Cleft Palate in Apert Syndrome. Willie D, Holmes G, Jabs EW, Wu M. J Dev Biol 10 33 (2022)
  35. FGF signaling in cranial suture development and related diseases. Zhao X, Erhardt S, Sung K, Wang J. Front Cell Dev Biol 11 1112890 (2023)

Articles citing this publication (79)

  1. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. J Biol Chem 281 15694-15700 (2006)
  2. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM, Goodfellow PJ. Oncogene 26 7158-7162 (2007)
  3. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, Fitzpatrick D, Yu K, Ornitz DM, Econs MJ. Am J Hum Genet 76 361-367 (2005)
  4. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML. Mol Cell Biol 25 4946-4955 (2005)
  5. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Yeh BK, Igarashi M, Eliseenkova AV, Plotnikov AN, Sher I, Ron D, Aaronson SA, Mohammadi M. Proc Natl Acad Sci U S A 100 2266-2271 (2003)
  6. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Hum Mol Genet 13 2313-2324 (2004)
  7. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Teven CM, Farina EM, Rivas J, Reid RR. Genes Dis 1 199-213 (2014)
  8. The paternal-age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW. Am J Hum Genet 73 939-947 (2003)
  9. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Goriely A, McVean GA, van Pelt AM, O'Rourke AW, Wall SA, de Rooij DG, Wilkie AO. Proc Natl Acad Sci U S A 102 6051-6056 (2005)
  10. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV, Wellens CL, Bengston A, Yudt LM, Eliseenkova AV, Ma J, Curtin JA, Hyder P, Harper UL, Riedesel E, Mann GJ, Trent JM, Bastian BC, Meltzer PS, Mohammadi M, Pollock PM. Mol Cancer Res 7 41-54 (2009)
  11. Fgf signaling controls the number of phalanges and tip formation in developing digits. Sanz-Ezquerro JJ, Tickle C. Curr Biol 13 1830-1836 (2003)
  12. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Harding TC, Long L, Palencia S, Zhang H, Sadra A, Hestir K, Patil N, Levin A, Hsu AW, Charych D, Brennan T, Zanghi J, Halenbeck R, Marshall SA, Qin M, Doberstein SK, Hollenbaugh D, Kavanaugh WM, Williams LT, Baker KP. Sci Transl Med 5 178ra39 (2013)
  13. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. Wang Y, Sun M, Uhlhorn VL, Zhou X, Peter I, Martinez-Abadias N, Hill CA, Percival CJ, Richtsmeier JT, Huso DL, Jabs EW. BMC Dev Biol 10 22 (2010)
  14. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. Zhou M, Luo J, Chen M, Yang H, Learned RM, DePaoli AM, Tian H, Ling L. J Hepatol 66 1182-1192 (2017)
  15. Skeletal analysis of the Fgfr3(P244R) mouse, a genetic model for the Muenke craniosynostosis syndrome. Twigg SR, Healy C, Babbs C, Sharpe JA, Wood WG, Sharpe PT, Morriss-Kay GM, Wilkie AO. Dev Dyn 238 331-342 (2009)
  16. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate. Welsh IC, O'Brien TP. Dev Biol 336 53-67 (2009)
  17. Exploiting sequence and structure homologs to identify protein-protein binding sites. Chung JL, Wang W, Bourne PE. Proteins 62 630-640 (2006)
  18. Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor.fibroblast growth factor receptor complexes. Zhang F, Zhang Z, Lin X, Beenken A, Eliseenkova AV, Mohammadi M, Linhardt RJ. Biochemistry 48 8379-8386 (2009)
  19. Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Martínez-Abadías N, Percival C, Aldridge K, Hill CA, Ryan T, Sirivunnabood S, Wang Y, Jabs EW, Richtsmeier JT. Dev Dyn 239 3058-3071 (2010)
  20. Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Rannan-Eliya SV, Taylor IB, De Heer IM, Van Den Ouweland AM, Wall SA, Wilkie AO. Hum Genet 115 200-207 (2004)
  21. Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, Aaronson SA, Linhardt RJ, Mohammadi M. Mol Cell Biol 25 671-684 (2005)
  22. Evidence that Fgf10 contributes to the skeletal and visceral defects of an Apert syndrome mouse model. Hajihosseini MK, Duarte R, Pegrum J, Donjacour A, Lana-Elola E, Rice DP, Sharpe J, Dickson C. Dev Dyn 238 376-385 (2009)
  23. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. Martínez-Abadías N, Heuzé Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT. PLoS One 6 e26425 (2011)
  24. Structural basis for activation of fibroblast growth factor signaling by sucrose octasulfate. Yeh BK, Eliseenkova AV, Plotnikov AN, Green D, Pinnell J, Polat T, Gritli-Linde A, Linhardt RJ, Mohammadi M. Mol Cell Biol 22 7184-7192 (2002)
  25. Rare mutations of FGFR2 causing apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily. Bochukova EG, Roscioli T, Hedges DJ, Taylor IB, Johnson D, David DJ, Deininger PL, Wilkie AO. Hum Mutat 30 204-211 (2009)
  26. Role of FGFR2-signaling in the pathogenesis of acne. Melnik BC. Dermatoendocrinol 1 141-156 (2009)
  27. The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. Yoon SR, Qin J, Glaser RL, Jabs EW, Wexler NS, Sokol R, Arnheim N, Calabrese P. PLoS Genet 5 e1000558 (2009)
  28. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, Yamamoto T, Nakazawa N, Seya T, Ohaki Y, Naito Z. Cancer Lett 309 209-219 (2011)
  29. Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Matsuda Y, Ueda J, Ishiwata T. Patholog Res Int 2012 574768 (2012)
  30. Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. McDowell LM, Frazier BA, Studelska DR, Giljum K, Chen J, Liu J, Yu K, Ornitz DM, Zhang L. J Biol Chem 281 6924-6930 (2006)
  31. From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome. Martínez-Abadías N, Holmes G, Pankratz T, Wang Y, Zhou X, Jabs EW, Richtsmeier JT. Dis Model Mech 6 768-779 (2013)
  32. Increased EFG- and PDGFalpha-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Miraoui H, Ringe J, Häupl T, Marie PJ. Hum Mol Genet 19 1678-1689 (2010)
  33. Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1. Beenken A, Eliseenkova AV, Ibrahimi OA, Olsen SK, Mohammadi M. J Biol Chem 287 3067-3078 (2012)
  34. Soluble form of FGFR2 with S252W partially prevents craniosynostosis of the apert mouse model. Morita J, Nakamura M, Kobayashi Y, Deng CX, Funato N, Moriyama K. Dev Dyn 243 560-567 (2014)
  35. Molecular basis of cranial suture biology and disease: Osteoblastic and osteoclastic perspectives. Beederman M, Farina EM, Reid RR. Genes Dis 1 120-125 (2014)
  36. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Li X, Young NM, Tropp S, Hu D, Xu Y, Hallgrímsson B, Marcucio RS. Hum Mol Genet 22 5160-5172 (2013)
  37. The primary site of the acrocephalic feature in Apert Syndrome is a dwarf cranial base with accelerated chondrocytic differentiation due to aberrant activation of the FGFR2 signaling. Nagata M, Nuckolls GH, Wang X, Shum L, Seki Y, Kawase T, Takahashi K, Nonaka K, Takahashi I, Noman AA, Suzuki K, Slavkin HC. Bone 48 847-856 (2011)
  38. FGFR2 mutations are associated with poor outcomes in endometrioid endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Jeske YW, Ali S, Byron SA, Gao F, Mannel RS, Ghebre RG, DiSilvestro PA, Lele SB, Pearl ML, Schmidt AP, Lankes HA, Ramirez NC, Rasty G, Powell M, Goodfellow PJ, Pollock PM. Gynecol Oncol 145 366-373 (2017)
  39. N-Glycosylation regulates fibroblast growth factor receptor/EGL-15 activity in Caenorhabditis elegans in vivo. Polanska UM, Duchesne L, Harries JC, Fernig DG, Kinnunen TK. J Biol Chem 284 33030-33039 (2009)
  40. Postnatal brain and skull growth in an Apert syndrome mouse model. Hill CA, Martínez-Abadías N, Motch SM, Austin JR, Wang Y, Jabs EW, Richtsmeier JT, Aldridge K. Am J Med Genet A 161A 745-757 (2013)
  41. Why study human limb malformations? Wilkie AO. J Anat 202 27-35 (2003)
  42. Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Liu Y, Ma J, Beenken A, Srinivasan L, Eliseenkova AV, Mohammadi M. Structure 25 1325-1336.e3 (2017)
  43. Investigation of FGFR2-IIIC signaling via FGF-2 ligand for advancing GCT stromal cell differentiation. Singh S, Singh M, Mak IW, Turcotte R, Ghert M. PLoS One 7 e46769 (2012)
  44. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Holmes G, O'Rourke C, Motch Perrine SM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW. Development 145 dev166488 (2018)
  45. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Motch Perrine SM, Wu M, Stephens NB, Kriti D, van Bakel H, Jabs EW, Richtsmeier JT. Dis Model Mech 12 dmm038513 (2019)
  46. Molecular analysis of coronal perisutural tissues in a craniosynostotic rabbit model using polymerase chain reaction suppression subtractive hybridization. Cray JJ, Gallo PH, Durham EL, Losee JE, Mooney MP, Kathju S, Cooper GM. Plast Reconstr Surg 128 95-103 (2011)
  47. Mouse models of Apert syndrome. Holmes G. Childs Nerv Syst 28 1505-1510 (2012)
  48. A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome. Fenwick AL, Bowdin SC, Klatt RE, Wilkie AO. BMC Med Genet 12 122 (2011)
  49. Quantification of facial skeletal shape variation in fibroblast growth factor receptor-related craniosynostosis syndromes. Heuzé Y, Martínez-Abadías N, Stella JM, Arnaud E, Collet C, García Fructuoso G, Alamar M, Lo LJ, Boyadjiev SA, Di Rocco F, Richtsmeier JT. Birth Defects Res A Clin Mol Teratol 100 250-259 (2014)
  50. Letter Directional specificity of prostate stromal to epithelial cell communication via FGF7/FGFR2 is set by cell- and FGFR2 isoform-specific heparan sulfate. Kan M, Uematsu F, Wu X, Wang F. In Vitro Cell Dev Biol Anim 37 575-577 (2001)
  51. Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B, Liu L. PLoS One 10 e112716 (2015)
  52. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. Elife 9 e55829 (2020)
  53. Relation of FGFR2 genetic polymorphisms to the association between oral contraceptive use and the risk of breast cancer in Chinese women. Xu WH, Shu XO, Long J, Lu W, Cai Q, Zheng Y, Xiang YB, Dai Q, Zhao GM, Gu K, Bao PP, Gao YT, Zheng W. Am J Epidemiol 173 923-931 (2011)
  54. Cell Mechanics of Craniosynostosis. Al-Rekabi Z, Cunningham ML, Sniadecki NJ. ACS Biomater Sci Eng 3 2733-2743 (2017)
  55. FGFR2 mutation confers a less drastic gain of function in mesenchymal stem cells than in fibroblasts. Yeh E, Atique R, Ishiy FA, Fanganiello RD, Alonso N, Matushita H, da Rocha KM, Passos-Bueno MR. Stem Cell Rev Rep 8 685-695 (2012)
  56. Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia. Zhou J, He L, Pang Z, Appelman HD, Kuick R, Beer DG, Li M, Wang TD. Oncotarget 8 87095-87106 (2017)
  57. Predicting the impact of deleterious mutations in the protein kinase domain of FGFR2 in the context of function, structure, and pathogenesis--a bioinformatics approach. C GP, Rajith B, Chakraborty C. Appl Biochem Biotechnol 170 1853-1870 (2013)
  58. Quantitative assessment of FGF regulation by cell surface heparan sulfates. Berry D, Shriver Z, Venkataraman G, Sasisekharan R. Biochem Biophys Res Commun 314 994-1000 (2004)
  59. Case Reports Apert's Syndrome. Kumar GR, Jyothsna M, Ahmed SB, Sree Lakshmi KR. Int J Clin Pediatr Dent 7 69-72 (2014)
  60. Cloning of TgfβR1 and TgfβR2 and Likely Exclusion as Loci of Origin in a Rabbit Craniosynostotic Model. Gallo PH, Cray JJ, Durham EL, Losee JE, Mooney MP, Cooper GM, Kathju S. Cleft Palate Craniofac J 51 56-69 (2014)
  61. FGFR-associated craniosynostosis syndromes and gastrointestinal defects. Hibberd CE, Bowdin S, Arudchelvan Y, Forrest CR, Brakora KA, Marcucio RS, Gong SG. Am J Med Genet A 170 3215-3221 (2016)
  62. Molecular Analysis of Twist1 and FGF Receptors in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin. Gallo PH, Cray JJ, Durham EL, Mooney MP, Cooper GM, Kathju S. Int J Genomics 2013 305971 (2013)
  63. Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis. Martínez-Abadías N, Mateu Estivill R, Sastre Tomas J, Motch Perrine S, Yoon M, Robert-Moreno A, Swoger J, Russo L, Kawasaki K, Richtsmeier J, Sharpe J. Elife 7 e36405 (2018)
  64. Serial patient-derived orthotopic xenografting of adenoid cystic carcinomas recapitulates stable expression of phenotypic alterations and innervation. Cornett A, Athwal HK, Hill E, Murphy G, Yeoh K, Moskaluk CA, Witt RL, D'Silva NJ, Agarwal S, Lombaert IMA. EBioMedicine 41 175-184 (2019)
  65. Developmental and Evolutionary Significance of the Zygomatic Bone. Heuzé Y, Kawasaki K, Schwarz T, Schoenebeck JJ, Richtsmeier JT. Anat Rec (Hoboken) 299 1616-1630 (2016)
  66. FGF2 effects in periosteal fibroblasts bearing the FGFR2 receptor Pro253 Arg mutation. Lilli C, Bellucci C, Baroni T, Aisa C, Carinci P, Scapoli L, Carinci F, Pezzetti F, Lumare E, Stabellini G, Bodo M. Cytokine 38 22-31 (2007)
  67. Molecular analysis of exons 8, 9 and 10 of the fibroblast growth factor receptor 2 (FGFR2) gene in two families with index cases of Apert Syndrome. Torres L, Hernández G, Barrera A, Ospina S, Prada R. Colomb Med (Cali) 46 150-153 (2015)
  68. Molecular analysis of exon 7 of the fibroblast growth factor receptor 2 (FGFR2) gene in an Indonesian patient with Apert syndrome: a case report. Brajadenta GS, Sari AIP, Nauphar D, Pratamawati TM, Thoreau V. J Med Case Rep 13 244 (2019)
  69. Porcine bone marrow stromal cell differentiation on heparin-adsorbed poly(e-caprolactone)-tricalcium phosphate-collagen scaffolds. Chum ZZ, Woodruff MA, Cool SM, Hutmacher DW. Acta Biomater 5 3305-3315 (2009)
  70. A novel heterozygous mutation of three consecutive nucleotides causing Apert syndrome in a Congolese family. Lumaka A, Mubungu G, Mukaba P, Mutantu P, Luyeye G, Corveleyn A, Tady BP, Lukusa Tshilobo P, Devriendt K. Eur J Med Genet 57 169-173 (2014)
  71. The Immunogenetics of Acne. Elsaie ML, Aly DG. Adv Exp Med Biol 1367 137-154 (2022)
  72. Actual concepts in scaphocephaly : (an experience of 98 cases). Ciurea AV, Toader C, Mihalache C. J Med Life 4 424-431 (2011)
  73. Case Reports Apert Syndrome: An Insight Into Dentofacial Features. Jose B, Emmatty TB, Methippara JJ, Kumar K, Thampi NM. Cureus 13 e17735 (2021)
  74. Apert's syndrome: Study by whole exome sequencing. Munshi A, Khetarpal P, Das S, Rao V, Valecha M, Bansal M, Kumar R. Genes Dis 5 119-122 (2018)
  75. Cell Type-Dependent Nonspecific Fibroblast Growth Factor Signaling in Apert Syndrome. Yeh E, Atique R, Fanganiello RD, Sunaga DY, Ishiy FA, Passos-Bueno MR. Stem Cells Dev 25 1249-1260 (2016)
  76. Craniofacial surgery, from past pioneers to future promise. Wan DC, Kwan MD, Kumar A, Bradley JP, Longaker MT. J Maxillofac Oral Surg 8 348-356 (2009)
  77. Reduced binding of FGF1 to mutant fibroblast growth factor receptor 3. Khnykin D, Olsnes S. Growth Factors 24 111-119 (2006)
  78. Letter 1H, (13)C and (15)N chemical shift assignments of the D2 domain of the fibroblast growth factor receptor. Hung KW, Kumar TK, Yu C. J Biomol NMR 30 99-100 (2004)
  79. Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3). Li Y, Delamar M, Busca P, Prestat G, Le Corre L, Legeai-Mallet L, Hu R, Zhang R, Barbault F. J Comput Aided Mol Des 29 619-641 (2015)