1i3j Citations

Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate.

EMBO J 20 3631-7 (2001)
Cited: 56 times
EuropePMC logo PMID: 11447104

Abstract

I-TevI is a site-specific, sequence-tolerant intron endonuclease. The crystal structure of the DNA-binding domain of I-TevI complexed with the 20 bp primary binding region of its DNA target reveals an unusually extended structure composed of three subdomains: a Zn finger, an elongated segment containing a minor groove-binding alpha-helix, and a helix-turn-helix. The protein wraps around the DNA, mostly following the minor groove, contacting the phosphate backbone along the full length of the duplex. Surprisingly, while the minor groove-binding helix and the helix-turn- helix subdomain make hydrophobic contacts, the few base-specific hydrogen bonds occur in segments that lack secondary structure and flank the intron insertion site. The multiple base-specific interactions over a long segment of the substrate are consistent with the observed high site specificity in spite of sequence tolerance, while the modular composition of the domain is pertinent to the evolution of homing endonucleases.

Reviews - 1i3j mentioned but not cited (1)

  1. Bacteriophage T4 genome. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Microbiol Mol Biol Rev 67 86-156, table of contents (2003)

Articles - 1i3j mentioned but not cited (10)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res 31 532-550 (2003)
  2. Predicting DNA-binding sites of proteins from amino acid sequence. Yan C, Terribilini M, Wu F, Jernigan RL, Dobbs D, Honavar V. BMC Bioinformatics 7 262 (2006)
  3. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V. EMBO J 20 3631-3637 (2001)
  4. Monomeric site-specific nucleases for genome editing. Kleinstiver BP, Wolfs JM, Kolaczyk T, Roberts AK, Hu SX, Edgell DR. Proc Natl Acad Sci U S A 109 8061-8066 (2012)
  5. Energetics of the protein-DNA-water interaction. Spyrakis F, Cozzini P, Bertoli C, Marabotti A, Kellogg GE, Mozzarelli A. BMC Struct Biol 7 4 (2007)
  6. Social networking between mobile introns and their host genes. Stoddard B, Belfort M. Mol Microbiol 78 1-4 (2010)
  7. Exploring DNA structure with Cn3D. Porter SG, Day J, McCarty RE, Shearn A, Shingles R, Fletcher L, Murphy S, Pearlman R. CBE Life Sci Educ 6 65-73 (2007)
  8. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis. Lagerbäck P, Carlson K. J Bacteriol 190 5533-5544 (2008)
  9. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  10. DNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore. Macorano L, Binny TM, Spiegl T, Klimenko V, Singer A, Oberleitner L, Applegate V, Seyffert S, Stefanski A, Gremer L, Gertzen CGW, Höppner A, Smits SHJ, Nowack ECM. Proc Natl Acad Sci U S A 120 e2221595120 (2023)


Reviews citing this publication (11)

  1. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  2. Moonlighting proteins--an update. Jeffery CJ. Mol Biosyst 5 345-350 (2009)
  3. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Stoddard BL. Structure 19 7-15 (2011)
  4. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Chan SH, Stoddard BL, Xu SY. Nucleic Acids Res 39 1-18 (2011)
  5. Mobile DNA elements in T4 and related phages. Edgell DR, Gibb EA, Belfort M. Virol J 7 290 (2010)
  6. Learning to live together: mutualism between self-splicing introns and their hosts. Edgell DR, Chalamcharla VR, Belfort M. BMC Biol 9 22 (2011)
  7. Homing endonucleases: from basics to therapeutic applications. Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Cell Mol Life Sci 67 727-748 (2010)
  8. Proteins with neomorphic moonlighting functions in disease. Jeffery CJ. IUBMB Life 63 489-494 (2011)
  9. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Belfort M, Bonocora RP. Methods Mol Biol 1123 1-26 (2014)
  10. New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Sitbon E, Pietrokovski S. Trends Biochem Sci 28 473-477 (2003)
  11. Characterization of homing endonucleases. Kowalski JC, Derbyshire V. Methods 28 365-373 (2002)

Articles citing this publication (34)

  1. Phylogenomic analysis of the GIY-YIG nuclease superfamily. Dunin-Horkawicz S, Feder M, Bujnicki JM. BMC Genomics 7 98 (2006)
  2. Homing endonucleases from mobile group I introns: discovery to genome engineering. Stoddard BL. Mob DNA 5 7 (2014)
  3. Mutations altering the cleavage specificity of a homing endonuclease. Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL. Nucleic Acids Res 30 3870-3879 (2002)
  4. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. Shen BW, Landthaler M, Shub DA, Stoddard BL. J Mol Biol 342 43-56 (2004)
  5. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S. Nucleic Acids Res 37 2560-2573 (2009)
  6. The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, Góes-Neto A, Cotomacci C, Carazzolle MF, Sardinha-Pinto N, Thomazella DP, Rincones J, Digiampietri L, Carraro DM, Azeredo-Espin AM, Reis SF, Deckmann AC, Gramacho K, Gonçalves MS, Moura Neto JP, Barbosa LV, Meinhardt LW, Cascardo JC, Pereira GA. Mycol Res 112 1136-1152 (2008)
  7. DNA binding and degradation by the HNH protein ColE7. Hsia KC, Chak KF, Liang PH, Cheng YS, Ku WY, Yuan HS. Structure 12 205-214 (2004)
  8. The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille. Landthaler M, Shub DA. Nucleic Acids Res 31 3071-3077 (2003)
  9. Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Wu W, Wood DW, Belfort G, Derbyshire V, Belfort M. Nucleic Acids Res 30 4864-4871 (2002)
  10. Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Dean AB, Stanger MJ, Dansereau JT, Van Roey P, Derbyshire V, Belfort M. Proc Natl Acad Sci U S A 99 8554-8561 (2002)
  11. Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Edgell DR, Derbyshire V, Van Roey P, LaBonne S, Stanger MJ, Li Z, Boyd TM, Shub DA, Belfort M. Nat Struct Mol Biol 11 936-944 (2004)
  12. Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene. Edgell DR, Stanger MJ, Belfort M. J Mol Biol 343 1231-1241 (2004)
  13. SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. Liu Q, Belle A, Shub DA, Belfort M, Edgell DR. J Mol Biol 334 13-23 (2003)
  14. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Brok-Volchanskaya VS, Kadyrov FA, Sivogrivov DE, Kolosov PM, Sokolov AS, Shlyapnikov MG, Kryukov VM, Granovsky IE. Nucleic Acids Res 36 2094-2105 (2008)
  15. Importance of a single base pair for discrimination between intron-containing and intronless alleles by endonuclease I-BmoI. Edgell DR, Stanger MJ, Belfort M. Curr Biol 13 973-978 (2003)
  16. Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease mediated catalysis. Sokolowska M, Czapinska H, Bochtler M. Nucleic Acids Res 39 1554-1564 (2011)
  17. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family. Gasiunas G, Sasnauskas G, Tamulaitis G, Urbanke C, Razaniene D, Siksnys V. Nucleic Acids Res 36 938-949 (2008)
  18. Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family. Taylor GK, Heiter DF, Pietrokovski S, Stoddard BL. Nucleic Acids Res 39 9705-9719 (2011)
  19. Thermodynamics of DNA target site recognition by homing endonucleases. Eastberg JH, McConnell Smith A, Zhao L, Ashworth J, Shen BW, Stoddard BL. Nucleic Acids Res 35 7209-7221 (2007)
  20. Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Liu Q, Derbyshire V, Belfort M, Edgell DR. Nucleic Acids Res 34 1755-1764 (2006)
  21. Redox-responsive zinc finger fidelity switch in homing endonuclease and intron promiscuity in oxidative stress. Robbins JB, Smith D, Belfort M. Curr Biol 21 243-248 (2011)
  22. Dual role for Zn2+ in maintaining structural integrity and inducing DNA sequence specificity in a promiscuous endonuclease. Saravanan M, Vasu K, Ghosh S, Nagaraja V. J Biol Chem 282 32320-32326 (2007)
  23. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. McLaughlin WA, Berman HM. J Mol Biol 330 43-55 (2003)
  24. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. Kleinstiver BP, Fernandes AD, Gloor GB, Edgell DR. Nucleic Acids Res 38 2411-2427 (2010)
  25. The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs. Kleinstiver BP, Wang L, Wolfs JM, Kolaczyk T, McDowell B, Wang X, Schild-Poulter C, Bogdanove AJ, Edgell DR. G3 (Bethesda) 4 1155-1165 (2014)
  26. Role of the interdomain linker in distance determination for remote cleavage by homing endonuclease I-TevI. Liu Q, Dansereau JT, Puttamadappa SS, Shekhtman A, Derbyshire V, Belfort M. J Mol Biol 379 1094-1106 (2008)
  27. A general purification platform for toxic proteins based on intein trans-splicing. Shi C, Tarimala A, Meng Q, Wood DW. Appl Microbiol Biotechnol 98 9425-9435 (2014)
  28. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA. Kleinstiver BP, Wolfs JM, Edgell DR. Nucleic Acids Res 41 5413-5427 (2013)
  29. Homing endonuclease I-TevIII: dimerization as a means to a double-strand break. Robbins JB, Stapleton M, Stanger MJ, Smith D, Dansereau JT, Derbyshire V, Belfort M. Nucleic Acids Res 35 1589-1600 (2007)
  30. Mycobacterium tuberculosis RecA intein, a LAGLIDADG homing endonuclease, displays Mn(2+) and DNA-dependent ATPase activity. Guhan N, Muniyappa K. Nucleic Acids Res 31 4184-4191 (2003)
  31. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference. Roy AC, Wilson GG, Edgell DR. Nucleic Acids Res 44 7350-7359 (2016)
  32. Glucocorticoid receptor-like Zn(Cys)4 motifs in BslI restriction endonuclease. Vanamee ES, Hsieh Pc, Zhu Z, Yates D, Garman E, Xu Sy, Aggarwal AK. J Mol Biol 334 595-603 (2003)
  33. Scientific serendipity initiates an intron odyssey. Belfort M. J Biol Chem 284 29997-30003 (2009)
  34. Research Support, Non-U.S. Gov't Double duty. Windbichler N, Schroeder R. Nat Struct Mol Biol 11 910-911 (2004)