1hvr Citations

Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors.

Abstract

Mechanistic information and structure-based design methods have been used to design a series of nonpeptide cyclic ureas that are potent inhibitors of human immunodeficiency virus (HIV) protease and HIV replication. A fundamental feature of these inhibitors is the cyclic urea carbonyl oxygen that mimics the hydrogen-bonding features of a key structural water molecule. The success of the design in both displacing and mimicking the structural water molecule was confirmed by x-ray crystallographic studies. Highly selective, preorganized inhibitors with relatively low molecular weight and high oral bioavailability were synthesized.

Reviews - 1hvr mentioned but not cited (3)

  1. Targeting structural flexibility in HIV-1 protease inhibitor binding. Hornak V, Simmerling C. Drug Discov. Today 12 132-138 (2007)
  2. Visualization of macromolecular structures. O'Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, Nilges M, Saibil HR, Schafferhans A, Wade RC, Westhof E, Olson AJ. Nat. Methods 7 S42-55 (2010)
  3. Gaussian accelerated molecular dynamics for elucidation of drug pathways. Bhattarai A, Miao Y. Expert Opin Drug Discov 13 1055-1065 (2018)

Articles - 1hvr mentioned but not cited (45)

  1. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Hornak V, Okur A, Rizzo RC, Simmerling C. Proc. Natl. Acad. Sci. U.S.A. 103 915-920 (2006)
  2. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Bikadi Z, Hazai E. J Cheminform 1 15 (2009)
  3. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V, Okur A, Rizzo RC, Simmerling C. J. Am. Chem. Soc. 128 2812-2813 (2006)
  4. Efficient molecular docking of NMR structures: application to HIV-1 protease. Huang SY, Zou X. Protein Sci. 16 43-51 (2007)
  5. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  6. Altered substrate specificity of drug-resistant human immunodeficiency virus type 1 protease. Dauber DS, Ziermann R, Parkin N, Maly DJ, Mahrus S, Harris JL, Ellman JA, Petropoulos C, Craik CS. J. Virol. 76 1359-1368 (2002)
  7. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  8. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations. Jenwitheesuk E, Samudrala R. BMC Struct. Biol. 3 2 (2003)
  9. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations. Deng NJ, Zheng W, Gallicchio E, Levy RM. J. Am. Chem. Soc. 133 9387-9394 (2011)
  10. Modeling Protein-Ligand Binding by Mining Minima. Chen W, Gilson MK, Webb SP, Potter MJ. J Chem Theory Comput 6 3540-3557 (2010)
  11. KINARI-Web: a server for protein rigidity analysis. Fox N, Jagodzinski F, Li Y, Streinu I. Nucleic Acids Res. 39 W177-83 (2011)
  12. NMR relaxation in proteins with fast internal motions and slow conformational exchange: model-free framework and Markov state simulations. Xia J, Deng NJ, Levy RM. J Phys Chem B 117 6625-6634 (2013)
  13. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets. Allen WJ, Fochtman BC, Balius TE, Rizzo RC. J Comput Chem 38 2641-2663 (2017)
  14. Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. Li D, Ji B, Hwang KC, Huang Y. PLoS ONE 6 e19268 (2011)
  15. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction. Cheng T, Liu Z, Wang R. BMC Bioinformatics 11 193 (2010)
  16. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design. Pevzner Y, Frugier E, Schalk V, Caflisch A, Woodcock HL. J Chem Inf Model 54 2612-2620 (2014)
  17. MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters. Abreu RM, Froufe HJ, Queiroz MJ, Ferreira IC. J Cheminform 2 10 (2010)
  18. Defective hydrophobic sliding mechanism and active site expansion in HIV-1 protease drug resistant variant Gly48Thr/Leu89Met: mechanisms for the loss of saquinavir binding potency. Goldfarb NE, Ohanessian M, Biswas S, McGee TD, Mahon BP, Ostrov DA, Garcia J, Tang Y, McKenna R, Roitberg A, Dunn BM. Biochemistry 54 422-433 (2015)
  19. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. Guo Z, Li B, Cheng LT, Zhou S, McCammon JA, Che J. J Chem Theory Comput 11 753-765 (2015)
  20. Role of Conformational Motions in Enzyme Function: Selected Methodologies and Case Studies. Narayanan C, Bernard DN, Doucet N. Catalysts 6 (2016)
  21. Heterogeneous CPU+GPU-Enabled Simulations for DFTB Molecular Dynamics of Large Chemical and Biological Systems. Allec SI, Sun Y, Sun J, Chang CA, Wong BM. J Chem Theory Comput 15 2807-2815 (2019)
  22. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease. Huang YM, Raymundo MA, Chen W, Chang CA. Biochemistry 56 1311-1323 (2017)
  23. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  24. Improving the description of salt bridge strength and geometry in a Generalized Born model. Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C. J. Mol. Graph. Model. 29 676-684 (2011)
  25. Computer-based screening of functional conformers of proteins. Montiel Molina HM, Millán-Pacheco C, Pastor N, del Rio G. PLoS Comput. Biol. 4 e1000009 (2008)
  26. Improved estimation of protein-ligand binding free energy by using the ligand-entropy and mobility of water molecules. Fukunishi Y, Nakamura H. Pharmaceuticals (Basel) 6 604-622 (2013)
  27. Unique Flap Conformation in an HIV-1 Protease with High-Level Darunavir Resistance. Nakashima M, Ode H, Suzuki K, Fujino M, Maejima M, Kimura Y, Masaoka T, Hattori J, Matsuda M, Hachiya A, Yokomaku Y, Suzuki A, Watanabe N, Sugiura W, Iwatani Y. Front Microbiol 7 61 (2016)
  28. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds. Masso M. Biomed Res Int 2017 5760612 (2017)
  29. EDGA: A Population Evolution Direction-Guided Genetic Algorithm for Protein-Ligand Docking. Guan B, Zhang C, Ning J. J Comput Biol 23 585-596 (2016)
  30. Ligand Binding Pathways and Conformational Transitions of the HIV Protease. Miao Y, Huang YM, Walker RC, McCammon JA, Chang CA. Biochemistry 57 1533-1541 (2018)
  31. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  32. Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions. Marsh L. PLoS One 6 e23215 (2011)
  33. Statistical estimation of the protein-ligand binding free energy based on direct protein-ligand interaction obtained by molecular dynamics simulation. Fukunishi Y, Nakamura H. Pharmaceuticals (Basel) 5 1064-1079 (2012)
  34. An Efficient ABC_DE_Based Hybrid Algorithm for Protein-Ligand Docking. Guan B, Zhang C, Zhao Y. Int J Mol Sci 19 E1181 (2018)
  35. Genetic algorithm with a crossover elitist preservation mechanism for protein-ligand docking. Guan B, Zhang C, Ning J. AMB Express 7 174 (2017)
  36. HIGA: A Running History Information Guided Genetic Algorithm for Protein-Ligand Docking. Guan B, Zhang C, Zhao Y. Molecules 22 E2233 (2017)
  37. Interaction of HIV-1 aspartic protease with its inhibitor, by molecular dynamics and ab initio fragment molecular orbital method. Koyano K, Nakano T. J Synchrotron Radiat 15 239-242 (2008)
  38. Predicting the Effect of Single and Multiple Mutations on Protein Structural Stability. Dehghanpoor R, Ricks E, Hursh K, Gunderson S, Farhoodi R, Haspel N, Hutchinson B, Jagodzinski F. Molecules 23 (2018)
  39. Accurate Prediction of Inhibitor Binding to HIV-1 Protease Using CANDOCK. Falls Z, Fine J, Chopra G, Samudrala R. Front Chem 9 775513 (2021)
  40. GeomBD3: Brownian Dynamics Simulation Software for Biological and Engineered Systems. Cholko T, Kaushik S, Wu KY, Montes R, Chang CA. J Chem Inf Model 62 2257-2263 (2022)
  41. KVFinder-web: a web-based application for detecting and characterizing biomolecular cavities. Guerra JVS, Ribeiro-Filho HV, Pereira JGC, Lopes-de-Oliveira PS. Nucleic Acids Res 51 W289-W297 (2023)
  42. Matching Multiple Rigid Domain Decompositions of Proteins. Flynn E, Streinu I. IEEE Trans Nanobioscience 16 81-90 (2017)
  43. Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association. Kaushik S, Chang CA. Front Mol Biosci 8 659687 (2021)
  44. Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors. La Monica G, Lauria A, Bono A, Martorana A. Int J Mol Sci 22 6070 (2021)
  45. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. Sun J, Raymundo MAV, Chang CA. Life (Basel) 12 116 (2022)


Reviews citing this publication (46)

  1. Synthesis of native proteins by chemical ligation. Dawson PE, Kent SB. Annu. Rev. Biochem. 69 923-960 (2000)
  2. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Wlodawer A, Vondrasek J. Annu Rev Biophys Biomol Struct 27 249-284 (1998)
  3. Protein-ligand docking: current status and future challenges. Sousa SF, Fernandes PA, Ramos MJ. Proteins 65 15-26 (2006)
  4. Virtual ligand screening: strategies, perspectives and limitations. Klebe G. Drug Discov. Today 11 580-594 (2006)
  5. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Ladbury JE. Chem. Biol. 3 973-980 (1996)
  6. Structure-based virtual screening: an overview. Lyne PD. Drug Discov. Today 7 1047-1055 (2002)
  7. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. Böhm HJ. J. Comput. Aided Mol. Des. 12 309-323 (1998)
  8. Structural biology of HIV. Turner BG, Summers MF. J. Mol. Biol. 285 1-32 (1999)
  9. A review of protein-small molecule docking methods. Taylor RD, Jewsbury PJ, Essex JW. J. Comput. Aided Mol. Des. 16 151-166 (2002)
  10. The process of structure-based drug design. Anderson AC. Chem. Biol. 10 787-797 (2003)
  11. Recombining the structures of HIV integrase, RuvC and RNase H. Yang W, Steitz TA. Structure 3 131-134 (1995)
  12. Antiviral therapy for human immunodeficiency virus infections. De Clercq E. Clin. Microbiol. Rev. 8 200-239 (1995)
  13. The role of water in protein-DNA recognition. Jayaram B, Jain T. Annu Rev Biophys Biomol Struct 33 343-361 (2004)
  14. Water at biomolecular binding interfaces. Li Z, Lazaridis T. Phys Chem Chem Phys 9 573-581 (2007)
  15. Molecular recognition in chemical and biological systems. Persch E, Dumele O, Diederich F. Angew. Chem. Int. Ed. Engl. 54 3290-3327 (2015)
  16. Structure-based drug design: progress, results and challenges. Verlinde CL, Hol WG. Structure 2 577-587 (1994)
  17. Protease inhibitors as antiviral agents. Patick AK, Potts KE. Clin. Microbiol. Rev. 11 614-627 (1998)
  18. Targeting HIV-1 protease: a test of drug-design methodologies. West ML, Fairlie DP. Trends Pharmacol. Sci. 16 67-75 (1995)
  19. Structure-based drug design: computational advances. Marrone TJ, Briggs JM, McCammon JA. Annu. Rev. Pharmacol. Toxicol. 37 71-90 (1997)
  20. Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor. Thaisrivongs S, Strohbach JW. Biopolymers 51 51-58 (1999)
  21. A new class of models for computing receptor-ligand binding affinities. Gilson MK, Given JA, Head MS. Chem. Biol. 4 87-92 (1997)
  22. Predicting the structure of protein complexes: a step in the right direction. Shoichet BK, Kuntz ID. Chem. Biol. 3 151-156 (1996)
  23. Structure-based drug design. Colman PM. Curr. Opin. Struct. Biol. 4 868-874 (1994)
  24. Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections. Figlerowicz M, Alejska M, Kurzyńska-Kokorniak A, Figlerowicz M. Med Res Rev 23 488-518 (2003)
  25. Retroviral proteases and their roles in virion maturation. Konvalinka J, Kräusslich HG, Müller B. Virology 479-480 403-417 (2015)
  26. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Spyrakis F, Cavasotto CN. Arch. Biochem. Biophys. 583 105-119 (2015)
  27. The 'peptoid' approach to the design of non-peptide, small molecule agonists and antagonists of neuropeptides. Horwell DC. Trends Biotechnol. 13 132-134 (1995)
  28. Current methods for site-directed structure generation. Lewis RA, Leach AR. J. Comput. Aided Mol. Des. 8 467-475 (1994)
  29. Progress in anti-HIV structure-based drug design. Gait MJ, Karn J. Trends Biotechnol. 13 430-438 (1995)
  30. Automated docking and the search for HIV protease inhibitors. Olson AJ, Goodsell DS. SAR QSAR Environ Res 8 273-285 (1998)
  31. Chemical ecology: a view from the pharmaceutical industry. Caporale LH. Proc. Natl. Acad. Sci. U.S.A. 92 75-82 (1995)
  32. Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. Zafra-Ruano A, Luque I. FEBS Lett. 586 2619-2630 (2012)
  33. Early experience with protease inhibitors in human immunodeficiency virus-infected children. Sáez-Llorens X, Ramilo O. Pediatr. Infect. Dis. J. 17 728-738 (1998)
  34. Recent development in the design of antiviral agents. Saunders J, Cameron JM. Med Res Rev 15 497-531 (1995)
  35. Aspartic protease inhibitors containing tertiary alcohol transition-state mimics. Motwani HV, De Rosa M, Odell LR, Hallberg A, Larhed M. Eur J Med Chem 90 462-490 (2015)
  36. Characterization of HIV-1 protease mutants: random, directed, selected. Swanstrom R. Curr. Opin. Biotechnol. 5 409-413 (1994)
  37. [HIV-1 protease inhibitors in review] Hilgeroth A. Pharm Unserer Zeit 27 22-25 (1998)
  38. Characterising non-covalent interactions with the Cambridge Structural Database. Lommerse JP, Taylor R. J. Enzym. Inhib. 11 223-243 (1997)
  39. Development of designed site-directed pseudopeptide-peptido-mimetic immunogens as novel minimal subunit-vaccine candidates for malaria. Lozano JM, Lesmes LP, Carreño LF, Gallego GM, Patarroyo ME. Molecules 15 8856-8889 (2010)
  40. Discovery of nonpeptide, peptidomimetic peptidase inhibitors that target alternate enzyme active site conformations. Rich DH, Bursavich MG, Estiarte MA. Biopolymers 66 115-125 (2002)
  41. [Molecular similarity. 2. The structural basis of drug design] Kubinyi H. Pharm Unserer Zeit 27 158-172 (1998)
  42. [The key to the castle. II. Hansch analysis, 3d-QSAR and de novo design] Kubinyi H. Pharm Unserer Zeit 23 281-290 (1994)
  43. HINT, a code for understanding the interaction between biomolecules: a tribute to Donald J. Abraham. Kellogg GE, Marabotti A, Spyrakis F, Mozzarelli A. Front Mol Biosci 10 1194962 (2023)
  44. Imidazolidinones and Imidazolidine-2,4-diones as Antiviral Agents. Swain SP, Mohanty S. ChemMedChem 14 291-302 (2019)
  45. [Alternatives to peptidomimetics. New molecular classes as HIV protease inhibitors?] Hilgeroth A. Pharm Unserer Zeit 30 213-216 (2001)
  46. [HIV protease inhibitors. Development and overview] . Schleifer KJ. Pharm Unserer Zeit 29 341-349 (2000)

Articles citing this publication (248)

  1. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Cornilescu G, Delaglio F, Bax A. J. Biomol. NMR 13 289-302 (1999)
  2. Very fast empirical prediction and rationalization of protein pKa values. Li H, Robertson AD, Jensen JH. Proteins 61 704-721 (2005)
  3. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Condra JH, Schleif WA, Blahy OM, Gabryelski LJ, Graham DJ, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M. Nature 374 569-571 (1995)
  4. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. J. Comput. Aided Mol. Des. 11 425-445 (1997)
  5. Synopsis of some recent tactical application of bioisosteres in drug design. Meanwell NA. J. Med. Chem. 54 2529-2591 (2011)
  6. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. Morris GM, Goodsell DS, Huey R, Olson AJ. J. Comput. Aided Mol. Des. 10 293-304 (1996)
  7. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. Markowitz M, Saag M, Powderly WG, Hurley AM, Hsu A, Valdes JM, Henry D, Sattler F, La Marca A, Leonard JM. N. Engl. J. Med. 333 1534-1539 (1995)
  8. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. Hendlich M, Rippmann F, Barnickel G. J. Mol. Graph. Model. 15 359-63, 389 (1997)
  9. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA, Hughes SH, Arnold E. Nat. Struct. Biol. 2 407-415 (1995)
  10. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. Tjandra N, Wingfield P, Stahl S, Bax A. J. Biomol. NMR 8 273-284 (1996)
  11. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. Markowitz M, Mo H, Kempf DJ, Norbeck DW, Bhat TN, Erickson JW, Ho DD. J. Virol. 69 701-706 (1995)
  12. Consensus scoring for ligand/protein interactions. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB. J. Mol. Graph. Model. 20 281-295 (2002)
  13. Flexibility and function in HIV-1 protease. Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PY, Jadhav PK. Nat. Struct. Biol. 2 274-280 (1995)
  14. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Strack PR, Frey MW, Rizzo CJ, Cordova B, George HJ, Meade R, Ho SP, Corman J, Tritch R, Korant BD. Proc. Natl. Acad. Sci. U.S.A. 93 9571-9576 (1996)
  15. Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Schevitz RW, Bach NJ, Carlson DG, Chirgadze NY, Clawson DK, Dillard RD, Draheim SE, Hartley LW, Jones ND, Mihelich ED. Nat. Struct. Biol. 2 458-465 (1995)
  16. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY, Chu ZT, Tao H, Warshel A. Proteins 39 393-407 (2000)
  17. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. Michel J, Tirado-Rives J, Jorgensen WL. J. Am. Chem. Soc. 131 15403-15411 (2009)
  18. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang YF, Leshchenko S, Ghosh AK, Harrison RW, Weber IT. J. Med. Chem. 49 1379-1387 (2006)
  19. Compensating enthalpic and entropic changes hinder binding affinity optimization. Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Mario Amzel L, Freire E. Chem Biol Drug Des 69 413-422 (2007)
  20. Do water molecules mediate protein-DNA recognition? Reddy CK, Das A, Jayaram B. J. Mol. Biol. 314 619-632 (2001)
  21. Rational approach to AIDS drug design through structural biology. Wlodawer A. Annu. Rev. Med. 53 595-614 (2002)
  22. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Wallqvist A, Jernigan RL, Covell DG. Protein Sci. 4 1881-1903 (1995)
  23. Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. DuBois RM, Slavish PJ, Baughman BM, Yun MK, Bao J, Webby RJ, Webb TR, White SW. PLoS Pathog. 8 e1002830 (2012)
  24. Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJ, Sun Y, Kuntz ID, Ellman JA. Chem. Biol. 4 297-307 (1997)
  25. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Baldwin ET, Bhat TN, Gulnik S, Liu B, Topol IA, Kiso Y, Mimoto T, Mitsuya H, Erickson JW. Structure 3 581-590 (1995)
  26. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Fujiwara T, Sato A, el-Farrash M, Miki S, Abe K, Isaka Y, Kodama M, Wu Y, Chen LB, Harada H, Sugimoto H, Hatanaka M, Hinuma Y. Antimicrob. Agents Chemother. 42 1340-1345 (1998)
  27. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. J. Am. Chem. Soc. 130 16933-16942 (2008)
  28. On the use of LUDI to search the Fine Chemicals Directory for ligands of proteins of known three-dimensional structure. Böhm HJ. J. Comput. Aided Mol. Des. 8 623-632 (1994)
  29. Prediction of the water content in protein binding sites. Michel J, Tirado-Rives J, Jorgensen WL. J Phys Chem B 113 13337-13346 (2009)
  30. Utilising structural knowledge in drug design strategies: applications using Relibase. Günther J, Bergner A, Hendlich M, Klebe G. J. Mol. Biol. 326 621-636 (2003)
  31. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Aungst BJ, Nguyen NH, Bulgarelli JP, Oates-Lenz K. Pharm. Res. 17 1175-1180 (2000)
  32. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo. Lee T, Laco GS, Torbett BE, Fox HS, Lerner DL, Elder JH, Wong CH. Proc. Natl. Acad. Sci. U.S.A. 95 939-944 (1998)
  33. Structure-based design of parasitic protease inhibitors. Li R, Chen X, Gong B, Selzer PM, Li Z, Davidson E, Kurzban G, Miller RE, Nuzum EO, McKerrow JH, Fletterick RJ, Gillmor SA, Craik CS, Kuntz ID, Cohen FE, Kenyon GL. Bioorg. Med. Chem. 4 1421-1427 (1996)
  34. Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. Hodge CN, Aldrich PE, Bacheler LT, Chang CH, Eyermann CJ, Garber S, Grubb M, Jackson DA, Jadhav PK, Korant B, Lam PY, Maurin MB, Meek JL, Otto MJ, Rayner MM, Reid C, Sharpe TR, Shum L, Winslow DL, Erickson-Viitanen S. Chem. Biol. 3 301-314 (1996)
  35. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations. Raman EP, Yu W, Guvench O, Mackerell AD. J Chem Inf Model 51 877-896 (2011)
  36. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Forli S, Olson AJ. J. Med. Chem. 55 623-638 (2012)
  37. Evaluation of library ranking efficacy in virtual screening. Kontoyianni M, Sokol GS, McClellan LM. J Comput Chem 26 11-22 (2005)
  38. Characterization of a human immunodeficiency virus type 1 variant with reduced sensitivity to an aminodiol protease inhibitor. Patick AK, Rose R, Greytok J, Bechtold CM, Hermsmeier MA, Chen PT, Barrish JC, Zahler R, Colonno RJ, Lin PF. J. Virol. 69 2148-2152 (1995)
  39. Rapid and accurate prediction and scoring of water molecules in protein binding sites. Ross GA, Morris GM, Biggin PC. PLoS ONE 7 e32036 (2012)
  40. Current and Novel Inhibitors of HIV Protease. Pokorná J, Machala L, Rezáčová P, Konvalinka J. Viruses 1 1209-1239 (2009)
  41. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A. J. Mol. Biol. 358 289-309 (2006)
  42. Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Adachi M, Ohhara T, Kurihara K, Tamada T, Honjo E, Okazaki N, Arai S, Shoyama Y, Kimura K, Matsumura H, Sugiyama S, Adachi H, Takano K, Mori Y, Hidaka K, Kimura T, Hayashi Y, Kiso Y, Kuroki R. Proc. Natl. Acad. Sci. U.S.A. 106 4641-4646 (2009)
  43. Molecular recognition at the thrombin active site: structure-based design and synthesis of potent and selective thrombin inhibitors and the X-ray crystal structures of two thrombin-inhibitor complexes. Obst U, Banner DW, Weber L, Diederich F. Chem. Biol. 4 287-295 (1997)
  44. Specific inhibition of herpes simplex virus DNA polymerase by helical peptides corresponding to the subunit interface. Digard P, Williams KP, Hensley P, Brooks IS, Dahl CE, Coen DM. Proc. Natl. Acad. Sci. U.S.A. 92 1456-1460 (1995)
  45. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease. Trylska J, Antosiewicz J, Geller M, Hodge CN, Klabe RM, Head MS, Gilson MK. Protein Sci. 8 180-195 (1999)
  46. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. García-Sosa AT, Mancera RL, Dean PM. J Mol Model 9 172-182 (2003)
  47. Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear magnetic resonance spectroscopy. Yamazaki T, Hinck AP, Wang YX, Nicholson LK, Torchia DA, Wingfield P, Stahl SJ, Kaufman JD, Chang CH, Domaille PJ, Lam PY. Protein Sci. 5 495-506 (1996)
  48. Cluster analysis of consensus water sites in thrombin and trypsin shows conservation between serine proteases and contributions to ligand specificity. Sanschagrin PC, Kuhn LA. Protein Sci. 7 2054-2064 (1998)
  49. Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. Kaushik N, Basu A, Palumbo P, Myers RL, Pandey VN. J. Virol. 76 3881-3891 (2002)
  50. Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Katz BA, Sprengeler PA, Luong C, Verner E, Elrod K, Kirtley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, McGee D, Allen D, Martelli A, Mackman RL. Chem. Biol. 8 1107-1121 (2001)
  51. A comparison of heuristic search algorithms for molecular docking. Westhead DR, Clark DE, Murray CW. J. Comput. Aided Mol. Des. 11 209-228 (1997)
  52. Bile pigments as HIV-1 protease inhibitors and their effects on HIV-1 viral maturation and infectivity in vitro. McPhee F, Caldera PS, Bemis GW, McDonagh AF, Kuntz ID, Craik CS. Biochem. J. 320 ( Pt 2) 681-686 (1996)
  53. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chang CE, Trylska J, Tozzini V, McCammon JA. Chem Biol Drug Des 69 5-13 (2007)
  54. Limited sequence diversity of the HIV type 1 protease gene from clinical isolates and in vitro susceptibility to HIV protease inhibitors. Winslow DL, Stack S, King R, Scarnati H, Bincsik A, Otto MJ. AIDS Res. Hum. Retroviruses 11 107-113 (1995)
  55. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex. Tsui V, Radhakrishnan I, Wright PE, Case DA. J. Mol. Biol. 302 1101-1117 (2000)
  56. What has virtual screening ever done for drug discovery? Clark DE. Expert Opin Drug Discov 3 841-851 (2008)
  57. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Proteins 79 703-719 (2011)
  58. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  59. Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin. Merritt EA, Sarfaty S, Feil IK, Hol WG. Structure 5 1485-1499 (1997)
  60. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Tsitsanou KE, Thireou T, Drakou CE, Koussis K, Keramioti MV, Leonidas DD, Eliopoulos E, Iatrou K, Zographos SE. Cell. Mol. Life Sci. 69 283-297 (2012)
  61. Computational combinatorial ligand design: application to human alpha-thrombin. Caflisch A. J Comput Aided Mol Des 10 372-396 (1996)
  62. Identifying small-molecule lead compounds: the screening approach to drug discovery. Bevan P, Ryder H, Shaw I. Trends Biotechnol. 13 115-121 (1995)
  63. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP, Yu W, Lakkaraju SK, MacKerell AD. J Chem Inf Model 53 3384-3398 (2013)
  64. Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease. Wang YF, Tie Y, Boross PI, Tozser J, Ghosh AK, Harrison RW, Weber IT. J. Med. Chem. 50 4509-4515 (2007)
  65. From modeling to medicinal chemistry: automatic generation of two-dimensional complex diagrams. Stierand K, Rarey M. ChemMedChem 2 853-860 (2007)
  66. Hydration changes in the association of Hoechst 33258 with DNA. Kiser JR, Monk RW, Smalls RL, Petty JT. Biochemistry 44 16988-16997 (2005)
  67. Specific inhibition of bovine viral diarrhea virus replicase. Sun JH, Lemm JA, O'Boyle DR, Racela J, Colonno R, Gao M. J. Virol. 77 6753-6760 (2003)
  68. A Novel Class of Herbicides (Specific Inhibitors of Imidazoleglycerol Phosphate Dehydratase). Mori I, Fonne-Pfister R, Matsunaga S, Tada S, Kimura Y, Iwasaki G, Mano J, Hatano M, Nakano T, Koizumi S, Scheidegger A, Hayakawa K, Ohta D. Plant Physiol. 107 719-723 (1995)
  69. Aryl ureas represent a new class of anti-trypanosomal agents. Du X, Hansell E, Engel JC, Caffrey CR, Cohen FE, McKerrow JH. Chem. Biol. 7 733-742 (2000)
  70. BUILDER v.2: improving the chemistry of a de novo design strategy. Roe DC, Kuntz ID. J. Comput. Aided Mol. Des. 9 269-282 (1995)
  71. Fragment-Based flexible ligand docking by evolutionary optimization. Budin N, Majeux N, Caflisch A. Biol. Chem. 382 1365-1372 (2001)
  72. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. Sei S, Yang QE, O'Neill D, Yoshimura K, Nagashima K, Mitsuya H. J. Virol. 74 4621-4633 (2000)
  73. DREAM++: flexible docking program for virtual combinatorial libraries. Makino S, Ewing TJ, Kuntz ID. J. Comput. Aided Mol. Des. 13 513-532 (1999)
  74. Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility. Kairys V, Gilson MK. J Comput Chem 23 1656-1670 (2002)
  75. Accounting for water molecules in drug design. Wong SE, Lightstone FC. Expert Opin Drug Discov 6 65-74 (2011)
  76. Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere. Tong L, Pav S, Mui S, Lamarre D, Yoakim C, Beaulieu P, Anderson PC. Structure 3 33-40 (1995)
  77. Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs. Nillroth U, Vrang L, Markgren PO, Hultén J, Hallberg A, Danielson UH. Antimicrob. Agents Chemother. 41 2383-2388 (1997)
  78. Ligand-receptor docking with the Mining Minima optimizer. David L, Luo R, Gilson MK. J. Comput. Aided Mol. Des. 15 157-171 (2001)
  79. The 1.85 A resolution crystal structures of tissue factor in complex with humanized Fab D3h44 and of free humanized Fab D3h44: revisiting the solvation of antigen combining sites. Faelber K, Kirchhofer D, Presta L, Kelley RF, Muller YA. J. Mol. Biol. 313 83-97 (2001)
  80. The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts. Layten M, Hornak V, Simmerling C. J. Am. Chem. Soc. 128 13360-13361 (2006)
  81. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence. Namasivayam V, Günther R. Chem Biol Drug Des 70 475-484 (2007)
  82. Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation. Henchman RH, Tai K, Shen T, McCammon JA. Biophys. J. 82 2671-2682 (2002)
  83. Protein structure-based design of potent orally bioavailable, nonpeptide inhibitors of human immunodeficiency virus protease. Reich SH, Melnick M, Davies JF, Appelt K, Lewis KK, Fuhry MA, Pino M, Trippe AJ, Nguyen D, Dawson H. Proc. Natl. Acad. Sci. U.S.A. 92 3298-3302 (1995)
  84. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase. Birch L, Murray CW, Hartshorn MJ, Tickle IJ, Verdonk ML. J. Comput. Aided Mol. Des. 16 855-869 (2002)
  85. An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombin-ligand complex. Burkhard P, Taylor P, Walkinshaw MD. J. Mol. Biol. 277 449-466 (1998)
  86. Exploration of the P6/P7 region of the peptide-binding site of the human class II major histocompatability complex protein HLA-DR1. Zavala-Ruiz Z, Sundberg EJ, Stone JD, DeOliveira DB, Chan IC, Svendsen J, Mariuzza RA, Stern LJ. J Biol Chem 278 44904-44912 (2003)
  87. Interpreting trends in the binding of cyclic ureas to HIV-1 protease. Mardis KL, Luo R, Gilson MK. J. Mol. Biol. 309 507-517 (2001)
  88. Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Imai T, Hiraoka R, Kovalenko A, Hirata F. Proteins 66 804-813 (2007)
  89. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C, MacRae IJ. Elife 4 (2015)
  90. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance. Sayer JM, Agniswamy J, Weber IT, Louis JM. Protein Sci. 19 2055-2072 (2010)
  91. Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Hong H, Neamati N, Winslow HE, Christensen JL, Orr A, Pommier Y, Milne GW. Antivir. Chem. Chemother. 9 461-472 (1998)
  92. PRO_SELECT: combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology. Murray CW, Clark DE, Auton TR, Firth MA, Li J, Sykes RA, Waszkowycz B, Westhead DR, Young SC. J. Comput. Aided Mol. Des. 11 193-207 (1997)
  93. Automated docking of highly flexible ligands by genetic algorithms: a critical assessment. Cecchini M, Kolb P, Majeux N, Caflisch A. J Comput Chem 25 412-422 (2004)
  94. C2-symmetrical tetrahydroxyazepanes as inhibitors of glycosidases and HIV/FIV proteases. Qian X, Morís-Varas F, Fitzgerald MC, Wong CH. Bioorg. Med. Chem. 4 2055-2069 (1996)
  95. Identification of a clinical isolate of HIV-1 with an isoleucine at position 82 of the protease which retains susceptibility to protease inhibitors. King RW, Winslow DL, Garber S, Scarnati HT, Bachelor L, Stack S, Otto MJ. Antiviral Res. 28 13-24 (1995)
  96. Potency and selectivity of inhibition of human immunodeficiency virus protease by a small nonpeptide cyclic urea, DMP 323. Erickson-Viitanen S, Klabe RM, Cawood PG, O'Neal PL, Meek JL. Antimicrob. Agents Chemother. 38 1628-1634 (1994)
  97. Progress toward virtual screening for drug side effects. Rockey WM, Elcock AH. Proteins 48 664-671 (2002)
  98. Antiviral properties of palinavir, a potent inhibitor of the human immunodeficiency virus type 1 protease. Lamarre D, Croteau G, Wardrop E, Bourgon L, Thibeault D, Clouette C, Vaillancourt M, Cohen E, Pargellis C, Yoakim C, Anderson PC. Antimicrob. Agents Chemother. 41 965-971 (1997)
  99. Crystal structure of lysine sulfonamide inhibitor reveals the displacement of the conserved flap water molecule in human immunodeficiency virus type 1 protease. Nalam MN, Peeters A, Jonckers TH, Dierynck I, Schiffer CA. J. Virol. 81 9512-9518 (2007)
  100. Design of orally bioavailable, symmetry-based inhibitors of HIV protease. Kempf DJ, Marsh KC, Fino LC, Bryant P, Craig-Kennard A, Sham HL, Zhao C, Vasavanonda S, Kohlbrenner WE, Wideburg NE. Bioorg. Med. Chem. 2 847-858 (1994)
  101. Phase I/II study of the toxicity, pharmacokinetics, and activity of the HIV protease inhibitor SC-52151. Fischl MA, Richman DD, Flexner C, Para MF, Haubrich R, Karim A, Yeramian P, Holden-Wiltse J, Meehan PM. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 15 28-34 (1997)
  102. Solution kinetics measurements suggest HIV-1 protease has two binding sites for darunavir and amprenavir. Kovalevsky AY, Ghosh AK, Weber IT. J. Med. Chem. 51 6599-6603 (2008)
  103. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. Li D, Liu MS, Ji B, Hwang K, Huang Y. J Chem Phys 130 215102 (2009)
  104. Conformation of inhibitor-free HIV-1 protease derived from NMR spectroscopy in a weakly oriented solution. Roche J, Louis JM, Bax A. Chembiochem 16 214-218 (2015)
  105. Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2' to P1/P1'. Ax A, Schaal W, Vrang L, Samuelsson B, Hallberg A, Karlén A. Bioorg. Med. Chem. 13 755-764 (2005)
  106. Protein surface recognition by synthetic agents: design and structural requirements of a family of artificial receptors that bind to cytochrome c. Lin Q, Park HS, Hamuro Y, Lee CS, Hamilton AD. Biopolymers 47 285-297 (1998)
  107. Tricyclic ureas: a new class of HIV-1 protease inhibitors. Han W, Pelletier JC, Hodge CN. Bioorg. Med. Chem. Lett. 8 3615-3620 (1998)
  108. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. Ghosh AK, Brindisi M. J Med Chem 63 2751-2788 (2020)
  109. High resolution fast quantitative docking using Fourier domain correlation techniques. Blom NS, Sygusch J. Proteins 27 493-506 (1997)
  110. High-affinity inhibitors of tRNA-guanine transglycosylase replacing the function of a structural water cluster. Kohler PC, Ritschel T, Schweizer WB, Klebe G, Diederich F. Chemistry 15 10809-10817 (2009)
  111. Hydration of protein-RNA recognition sites. Barik A, Bahadur RP. Nucleic Acids Res. 42 10148-10160 (2014)
  112. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. García-Sosa AT, Mancera RL. J Mol Model 12 422-431 (2006)
  113. The effect of tightly bound water molecules on the structural interpretation of ligand-derived pharmacophore models. Lloyd DG, García-Sosa AT, Alberts IL, Todorov NP, Manceral RL. J. Comput. Aided Mol. Des. 18 89-100 (2004)
  114. Understanding traditional Chinese medicine anti-inflammatory herbal formulae by simulating their regulatory functions in the human arachidonic acid metabolic network. Gu S, Yin N, Pei J, Lai L. Mol Biosyst 9 1931-1938 (2013)
  115. Antiviral properties of aminodiol inhibitors against human immunodeficiency virus and protease. Bechtold CM, Patick AK, Alam M, Greytok J, Tino JA, Chen P, Gordon E, Ahmad S, Barrish JC, Zahler R. Antimicrob. Agents Chemother. 39 374-379 (1995)
  116. Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors. Rodgers JD, Lam PY, Johnson BL, Wang H, Li R, Ru Y, Ko SS, Seitz SP, Trainor GL, Anderson PS, Klabe RM, Bacheler LT, Cordova B, Garber S, Reid C, Wright MR, Chang CH, Erickson-Viitanen S. Chem. Biol. 5 597-608 (1998)
  117. Free Energy Calculations of Mutations Involving a Tightly Bound Water Molecule and Ligand Substitutions in a Ligand-Protein Complex. García-Sosa AT, Mancera RL. Mol Inform 29 589-600 (2010)
  118. Optimization of P1-P3 groups in symmetric and asymmetric HIV-1 protease inhibitors. Andersson HO, Fridborg K, Löwgren S, Alterman M, Mühlman A, Björsne M, Garg N, Kvarnström I, Schaal W, Classon B, Karlén A, Danielsson UH, Ahlsén G, Nillroth U, Vrang L, Oberg B, Samuelsson B, Hallberg A, Unge T. Eur. J. Biochem. 270 1746-1758 (2003)
  119. The de novo design and synthesis of cyclic urea inhibitors of factor Xa: initial SAR studies. Galemmo RA, Maduskuie TP, Dominguez C, Rossi KA, Knabb RM, Wexler RR, Stouten PF. Bioorg. Med. Chem. Lett. 8 2705-2710 (1998)
  120. A hierarchical method for generating low-energy conformers of a protein-ligand complex. Given JA, Gilson MK. Proteins 33 475-495 (1998)
  121. Design and synthesis of broad-based mono- and bi- cyclic inhibitors of FIV and HIV proteases. Mak CC, Brik A, Lerner DL, Elder JH, Morris GM, Olson AJ, Wong CH. Bioorg. Med. Chem. 11 2025-2040 (2003)
  122. Design and synthesis of sulfoximine based inhibitors for HIV-1 protease. Raza A, Sham YY, Vince R. Bioorg. Med. Chem. Lett. 18 5406-5410 (2008)
  123. Design, asymmetric synthesis, and evaluation of pseudosymmetric sulfoximine inhibitors against HIV-1 protease. Lu D, Sham YY, Vince R. Bioorg. Med. Chem. 18 2037-2048 (2010)
  124. Getting it right: modeling of pH, solvent and "nearly" everything else in virtual screening of biological targets. Kellogg GE, Fornabaio M, Spyrakis F, Lodola A, Cozzini P, Mozzarelli A, Abraham DJ. J. Mol. Graph. Model. 22 479-486 (2004)
  125. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. Biela A, Khayat M, Tan H, Kong J, Heine A, Hangauer D, Klebe G. J. Mol. Biol. 418 350-366 (2012)
  126. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. Yu W, Lakkaraju SK, Raman EP, Fang L, MacKerell AD. J Chem Inf Model 55 407-420 (2015)
  127. Structure-based design and synthesis of N(omega)-nitro-L-arginine-containing peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. Displacement of the heme structural water. Seo J, Igarashi J, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB. J. Med. Chem. 50 2089-2099 (2007)
  128. Understanding molecular mechanisms of traditional Chinese medicine for the treatment of influenza viruses infection by computational approaches. Gu S, Yin N, Pei J, Lai L. Mol Biosyst 9 2696-2700 (2013)
  129. A hybrid approach for addressing ring flexibility in 3D database searching. Sadowski J. J. Comput. Aided Mol. Des. 11 53-60 (1997)
  130. A mechanistic study of 3-aminoindazole cyclic urea HIV-1 protease inhibitors using comparative QSAR. Garg R, Bhhatarai B. Bioorg. Med. Chem. 12 5819-5831 (2004)
  131. A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors. DesJarlais RL, Dixon JS. J. Comput. Aided Mol. Des. 8 231-242 (1994)
  132. Discovery and optimization of nonpeptide HIV-1 protease inhibitors. Tummino PJ, Prasad JV, Ferguson D, Nouhan C, Graham N, Domagala JM, Ellsworth E, Gajda C, Hagen SE, Lunney EA, Para KS, Tait BD, Pavlovsky A, Erickson JW, Gracheck S, McQuade TJ, Hupe DJ. Bioorg. Med. Chem. 4 1401-1410 (1996)
  133. Exploring QSARs for inhibitory activity of non-peptide HIV-1 protease inhibitors by GA-PLS and GA-SVM. Deeb O, Goodarzi M. Chem Biol Drug Des 75 506-514 (2010)
  134. Facile incorporation of urea pseudopeptides into protease substrate analogue inhibitors. Myers AC, Kowalski JA, Lipton MA. Bioorg. Med. Chem. Lett. 14 5219-5222 (2004)
  135. On lattice protein structure prediction revisited. Dotu I, Cebrián M, Van Hentenryck P, Clote P. IEEE/ACM Trans Comput Biol Bioinform 8 1620-1632 (2011)
  136. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere. Rutenber EE, McPhee F, Kaplan AP, Gallion SL, Hogan JC, Craik CS, Stroud RM. Bioorg. Med. Chem. 4 1545-1558 (1996)
  137. Alpha-ketoamide Phe-Pro isostere as a new core structure for the inhibition of HIV protease. Munoz B, Giam CZ, Wong CH. Bioorg. Med. Chem. 2 1085-1090 (1994)
  138. DMP 323, a nonpeptide cyclic urea inhibitor of human immunodeficiency virus (HIV) protease, specifically and persistently blocks intracellular processing of HIV gag polyprotein. Rayner MM, Cordova BC, Meade RP, Aldrich PE, Jadhav PK, Ru Y, Lam PY. Antimicrob. Agents Chemother. 38 1635-1640 (1994)
  139. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations. Chen J, Yang M, Hu G, Shi S, Yi C, Zhang Q. J Mol Model 15 1245-1252 (2009)
  140. Targeting HIV-1 through molecular modeling and docking studies of CXCR4: leads for therapeutic development. Singh S, Malik BK, Sharma DK. Chem Biol Drug Des 69 191-203 (2007)
  141. Transverse 1H cross relaxation in 1H-15N correlated 1H CPMG experiments. Ishima R, Louis JM, Torchia DA. J. Magn. Reson. 137 289-292 (1999)
  142. Use of 3D QSAR methodology for data mining the National Cancer Institute Repository of Small Molecules: application to HIV-1 reverse transcriptase inhibition. Gussio R, Pattabiraman N, Kellogg GE, Zaharevitz DW. Methods 14 255-263 (1998)
  143. A quantitative structure-activity relationship study on some HIV-1 protease inhibitors using molecular connectivity index. Gayathri P, Pande V, Sivakumar R, Gupta SP. Bioorg. Med. Chem. 9 3059-3063 (2001)
  144. Active-site-directed 3D database searching: pharmacophore extraction and validation of hits. Clark DE, Westhead DR, Sykes RA, Murray CW. J. Comput. Aided Mol. Des. 10 397-416 (1996)
  145. Adaptability and flexibility of HIV-1 protease. Kumar M, Hosur MV. Eur. J. Biochem. 270 1231-1239 (2003)
  146. High-resolution protein hydration NMR experiments: probing how protein surfaces interact with water and other non-covalent ligands. Huang H, Melacini G. Anal. Chim. Acta 564 1-9 (2006)
  147. Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies. Christensen IT, Jørgensen FS. J. Biomol. Struct. Dyn. 15 473-488 (1997)
  148. Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site. Cappel D, Wahlström R, Brenk R, Sotriffer CA. J Chem Inf Model 51 2581-2594 (2011)
  149. Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity. Broeker NK, Gohlke U, Müller JJ, Uetrecht C, Heinemann U, Seckler R, Barbirz S. Glycobiology 23 59-68 (2013)
  150. The design and synthesis of 2,5-linked pyrrolinones. A potential non-peptide peptidomimetic scaffold. Smith AB, Knight SD, Sprengeler PA, Hirschmann R. Bioorg. Med. Chem. 4 1021-1034 (1996)
  151. A pharmacokinetic evaluation of HIV protease inhibitors, cyclic ureas, in rats and dogs. Wong YN, Burcham DL, Saxton PL, Erickson-Viitanen S, Grubb MF, Quon CY, Huang SM. Biopharm Drug Dispos 15 535-544 (1994)
  152. Analysis of factors influencing hydration site prediction based on molecular dynamics simulations. Yang Y, Hu B, Lill MA. J Chem Inf Model 54 2987-2995 (2014)
  153. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Frecer V, Burello E, Miertus S. Bioorg. Med. Chem. 13 5492-5501 (2005)
  154. Evidence for the Role of Cyclic AMP-Responsive Elements in Human Virus Replication and Disease. Gilchrist CA, Orten DJ, Hinrichs SH. J. Biomed. Sci. 3 293-306 (1996)
  155. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease. Louis JM, Roche J. J. Mol. Biol. 428 2780-2792 (2016)
  156. HIV protease inhibitor HOE/BAY 793, structure-activity relationships in a series of C2-symmetric diols. Budt KH, Peyman A, Hansen J, Knolle J, Meichsner C, Paessens A, Ruppert D, Stowasser B. Bioorg. Med. Chem. 3 559-571 (1995)
  157. Interaction of ganoderic acid on HIV related target: molecular docking studies. Akbar R, Yam WK. Bioinformation 7 413-417 (2011)
  158. Ligand design by targeting a binding site water. Matricon P, Suresh RR, Gao ZG, Panel N, Jacobson KA, Carlsson J. Chem Sci 12 960-968 (2020)
  159. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. Khedkar VM, Ambre PK, Verma J, Shaikh MS, Pissurlenkar RR, Coutinho EC. J Mol Model 16 1251-1268 (2010)
  160. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach. Roche J, Louis JM, Bax A, Best RB. Proteins 83 2117-2123 (2015)
  161. Quantitative structure-activity relationship studies on cyclic urea-based HIV protease inhibitors. Gupta SP, Babu MS, Garg R, Sowmya S. J. Enzym. Inhib. 13 399-407 (1998)
  162. Solvation studies of DMP323 and A76928 bound to HIV protease: analysis of water sites using grand canonical Monte Carlo simulations. Marrone TJ, Resat H, Hodge CN, Chang CH, McCammon JA. Protein Sci. 7 573-579 (1998)
  163. The role of bound water in the stability of the triple-helical conformation of (Pro-Pro-Gly)10. Gough CA, Anderson RW, Bhatnagar RS. J. Biomol. Struct. Dyn. 15 1029-1037 (1998)
  164. The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: modifications of the P1/P1' residues. Patel M, Bacheler LT, Rayner MM, Cordova BC, Klabe RM, Erickson-Viitanen S, Seitz SP. Bioorg. Med. Chem. Lett. 8 823-828 (1998)
  165. Anatomy by computer experiment of the exchange of a water molecule buried in human apolipoprotein E. Prévost M. Fold Des 3 345-351 (1998)
  166. Inhibition and substrate recognition--a computational approach applied to HIV protease. Vinkers HM, de Jonge MR, Daeyaert ED, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Janssen PA. J. Comput. Aided Mol. Des. 17 567-581 (2003)
  167. Linear and cyclic glycopeptide as HIV protease inhibitors. Pawar SA, Jabgunde AM, Maguire GE, Kruger HG, Sayed Y, Soliman ME, Dhavale DD, Govender T. Eur J Med Chem 60 144-154 (2013)
  168. Replica-Exchange and Standard State Binding Free Energies with Grand Canonical Monte Carlo. Ross GA, Bruce Macdonald HE, Cave-Ayland C, Cabedo Martinez AI, Essex JW. J Chem Theory Comput 13 6373-6381 (2017)
  169. Solution-phase generation of tetraurea libraries. Shipps GW, Spitz UP, Rebek J. Bioorg. Med. Chem. 4 655-657 (1996)
  170. Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors with high potency against multiple drug resistant viral strains. Zhao C, Sham HL, Sun M, Stoll VS, Stewart KD, Lin S, Mo H, Vasavanonda S, Saldivar A, Park C, McDonald EJ, Marsh KC, Klein LL, Kempf DJ, Norbeck DW. Bioorg. Med. Chem. Lett. 15 5499-5503 (2005)
  171. The role of structure-based ligand design and molecular modelling in drug discovery. Tollenaere JP. Pharm World Sci 18 56-62 (1996)
  172. An estimation method of binding free energy in terms of ABEEMσπ/MM and continuum electrostatics fused into LIE method. Chen SL, Zhao DX, Yang ZZ. J Comput Chem 32 338-348 (2011)
  173. Capture-Collapse Heterocyclization: 1,3-Diazepanes by C-N Reductive Elimination from Rhodacyclopentanones. McCreanor NG, Stanton S, Bower JF. J. Am. Chem. Soc. 138 11465-11468 (2016)
  174. Does a diol cyclic urea inhibitor of HIV-1 protease bind tighter than its corresponding alcohol form? A study by free energy perturbation and continuum electrostatics calculations. Wang L, Duan Y, Stouten P, De Lucca GV, Klabe RM, Kollman PA. J. Comput. Aided Mol. Des. 15 145-156 (2001)
  175. Facile one-pot synthesis of unsymmetrical ureas, carbamates, and thiocarbamates from Cbz-protected amines. Kim HK, Lee A. Org. Biomol. Chem. 14 7345-7353 (2016)
  176. Hydroxyl-terminated peptidomimetic inhibitors of neuronal nitric oxide synthase. Mbadugha BN, Seo J, Ji H, Martásek P, Roman LJ, Shea TM, Li H, Poulos TL, Silverman RB. Bioorg. Med. Chem. 14 3681-3690 (2006)
  177. Isoselenocyanates derived from amino acid esters: an expedient synthesis and application to the assembly of selenoureidopeptidomimetics, unsymmetrical selenoureas and selenohydantoins. Hemantha HP, Sureshbabu VV. J. Pept. Sci. 16 644-651 (2010)
  178. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site. Pujadas G, Palau J. Protein Sci. 10 1645-1657 (2001)
  179. Structure-based drug design and potent anti-cancer activity of tricyclic 5:7:5-fused diimidazo[4,5-d:4',5'-f][1,3]diazepines. Kondaskar A, Kondaskar S, Fishbein JC, Carter-Cooper BA, Lapidus RG, Sadowska M, Edelman MJ, Hosmane RS. Bioorg. Med. Chem. 21 618-631 (2013)
  180. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. de Aquino RA, Modolo LV, Alves RB, de Fátima Â. Org. Biomol. Chem. 11 8395-8409 (2013)
  181. True interaction mode of porcine pancreatic elastase with FR136706, a potent peptidyl inhibitor. Kinoshita T, Nakanishi I, Sato A, Tada T. Bioorg. Med. Chem. Lett. 13 21-24 (2003)
  182. 1H-1,3-diazepines, 5H-1,3-diazepines, 1,3-diazepinones, and 2,4-diazabicyclo[3.2.0]heptenes. Reisinger A, Koch R, Bernhardt PV, Wentrup C. Org. Biomol. Chem. 2 1227-1238 (2004)
  183. Back-scattering interferometry: an ultrasensitive method for the unperturbed detection of acetylcholinesterase-inhibitor interactions. Haddad GL, Young SC, Heindel ND, Bornhop DJ, Flowers RA. Angew. Chem. Int. Ed. Engl. 51 11126-11130 (2012)
  184. Dimerization of lithiated terminal aziridines. Hodgson DM, Miles SM. Angew. Chem. Int. Ed. Engl. 45 935-938 (2006)
  185. Disease-Specific Differentiation Between Drugs and Non-Drugs Using Principal Component Analysis of Their Molecular Descriptor Space. García-Sosa AT, Oja M, Hetényi C, Maran U. Mol Inform 31 369-383 (2012)
  186. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B. Ozcan A, Olmez EO, Alakent B. Proteins 81 788-804 (2013)
  187. HIV proteinase inhibitors containing 2-aminobenzylstatine as a novel scissile bond replacement: biochemical and pharmacological characterization. Billich A, Charpiot B, Fricker G, Gstach H, Lehr P, Peichl P, Scholz D, Rosenwirth B. Antiviral Res. 25 215-233 (1994)
  188. Identification of novel HIV 1--protease inhibitors: application of ligand and structure based pharmacophore mapping and virtual screening. Yadav D, Paliwal S, Yadav R, Pal M, Pandey A. PLoS ONE 7 e48942 (2012)
  189. Incorporating replacement free energy of binding-site waters in molecular docking. Sun H, Zhao L, Peng S, Huang N. Proteins 82 1765-1776 (2014)
  190. Modified solvent accessibility free energy prediction analysis of cyclic urea inhibitors binding to the HIV-1 protease. Sussman F, Villaverde MC, Martínez L. Protein Eng. 15 707-711 (2002)
  191. Quantifying water-mediated protein-ligand interactions in a glutamate receptor: a DFT study. Sahai MA, Biggin PC. J Phys Chem B 115 7085-7096 (2011)
  192. Solvent effects on ligand binding to a serine protease. Gopal SM, Klumpers F, Herrmann C, Schäfer LV. Phys Chem Chem Phys 19 10753-10766 (2017)
  193. Stoichiometric Reactions of CO2 and Indium-Silylamides and Catalytic Synthesis of Ureas. Xu M, Jupp AR, Stephan DW. Angew. Chem. Int. Ed. Engl. 56 14277-14281 (2017)
  194. Synthesis of N-substituted piperazinyl carbamoyl and acetyl derivatives of tetrahydropapaverine: potent antispasmodic agents. Kaur J, Ghosh NN, Talwar A, Chandra R. Chem. Pharm. Bull. 50 1223-1228 (2002)
  195. The design of antagonist peptide of hIL-6 based on the binding epitope of hIL-6 by computer-aided molecular modeling. Feng J, Li Y, Shen B. Peptides 25 1123-1131 (2004)
  196. Unsymmetrical tetrasubstituted ureas from tertiary carbamoylimidazole: activation by AlMe3. Velavan A, Sumathi S, Balasubramanian KK. Org. Biomol. Chem. 10 6420-6431 (2012)
  197. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin. Sridhar A, Ross GA, Biggin PC. PLoS ONE 12 e0172743 (2017)
  198. Conformationally constrained o-tolylpiperazine camphorsulfonamide oxytocin antagonists. Structural modifications that provide high receptor affinity and suggest a bioactive conformation. Williams PD, Ball RG, Clineschmidt BV, Culberson JC, Erb JM, Freidinger RM, Pawluczyk JM, Perlow DS, Pettibone DJ, Veber DF. Bioorg. Med. Chem. 2 971-985 (1994)
  199. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations. Prévost M. Biopolymers 75 196-207 (2004)
  200. Ligand shape emerges in solvent dipole ordering region at ligand binding site of protein. Murata K, Nagata N, Nakanishi I, Kitaura K. J Comput Chem 31 791-796 (2010)
  201. Outliers in SAR and QSAR: 3. Importance of considering the role of water molecules in protein-ligand interactions and quantitative structure-activity relationship studies. Kim KH. J Comput Aided Mol Des 35 371-396 (2021)
  202. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks. Rudling A, Orro A, Carlsson J. J Chem Inf Model 58 350-361 (2018)
  203. Quantitative structure-activity relationship studies on cyclic cyanoguanidines acting as HIV-1 protease inhibitors. Gupta SP, Babu MS. Bioorg. Med. Chem. 7 2549-2553 (1999)
  204. Resistance profiles of cyclic and linear inhibitors of HIV-1 protease. Ahlsén G, Hultén J, Shuman CF, Poliakov A, Lindgren MT, Alterman M, Samuelsson B, Hallberg A, Danielson UH. Antivir. Chem. Chemother. 13 27-37 (2002)
  205. Symmetry-based inhibitors of HIV-1 protease. Design, synthesis and preliminary structure-activity studies of acylated 2,3-diamino-1-hydroxypropanes and 2,4 diamino-1-hydroxybutanes. Marastoni M, Bazzaro M, Bortolotti F, Salvadori S, Tomatis R. Eur J Med Chem 34 651-657 (1999)
  206. 1,3,5-Triazepane-2,6-diones as structurally diverse and conformationally constrained dipeptide mimetics: identification of malaria liver stage inhibitors from a small pilot library. Lena G, Lallemand E, Gruner AC, Boeglin J, Roussel S, Schaffner AP, Aubry A, Franetich JF, Mazier D, Landau I, Briand JP, Didierjean C, Rénia L, Guichard G. Chemistry 12 8498-8512 (2006)
  207. A facile synthetic route to diazepinone derivatives via ring closing metathesis and its application for human cytidine deaminase inhibitors. Kim M, Gajulapati K, Kim C, Jung HY, Goo J, Lee K, Kaur N, Kang HJ, Chung SJ, Choi Y. Chem. Commun. (Camb.) 48 11443-11445 (2012)
  208. A survey of the role of nitrile groups in protein-ligand interactions. Wang Y, Du Y, Huang N. Future Med Chem 10 2713-2728 (2018)
  209. Application of carbodiimide mediated Lossen rearrangement for the synthesis of alpha-ureidopeptides and peptidyl ureas employing N-urethane alpha-amino/peptidyl hydroxamic acids. Narendra N, Chennakrishnareddy G, Sureshbabu VV. Org. Biomol. Chem. 7 3520-3526 (2009)
  210. AquaBridge: A novel method for systematic search of structural water molecules within the protein active sites. Afanasyeva A, Izmailov S, Grigoriev M, Petukhov M. J Comput Chem 36 1973-1977 (2015)
  211. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association. Cuzzolin A, Deganutti G, Salmaso V, Sturlese M, Moro S. ChemMedChem 13 522-531 (2018)
  212. Complexity in modeling and understanding protonation states: computational titration of HIV-1-protease-inhibitor complexes. Tripathi A, Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Kellogg GE. Chem. Biodivers. 4 2564-2577 (2007)
  213. Computational design of new cyclic urea inhibitors for improved binding of HIV-1 aspartic protease. Kotamarthi B, Bonin I, Benedetti F, Miertus S. Biochem. Biophys. Res. Commun. 268 384-389 (2000)
  214. De novo ligand design to an ensemble of protein structures. Todorov NP, Buenemann CL, Alberts IL. Proteins 64 43-59 (2006)
  215. Inhibitor docking screened by the modified SAFE_p scoring function: application to cyclic urea HIV-1 PR inhibitors. Vilar S, Villaverde MC, Sussman F. J Comput Chem 28 2216-2225 (2007)
  216. Probing the Interaction between HIV-1 Protease and the Homodimeric p66/p66' Reverse Transcriptase Precursor by Double Electron-Electron Resonance EPR Spectroscopy. Schmidt T, Louis JM, Clore GM. Chembiochem 21 3051-3055 (2020)
  217. Congresses Recent advances in the design and synthesis of small-molecule mimetic drugs. Kazmierski WM. Trends Biotechnol. 12 216-218 (1994)
  218. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors. Singh A, Kast J, Dirain ML, Huang H, Haskell-Luevano C. ACS Chem Neurosci 7 196-205 (2016)
  219. Synthesis of bioactive and fluorescent pyridine-triazole-coumarin peptidomimetics through sequential click-multicomponent reactions. Soumya TV, Muhammed Ajmal C, Bahulayan D. Bioorg. Med. Chem. Lett. 27 450-455 (2017)
  220. 2,5-Anhydro sugar diacid and 2,5-anhydro sugar diamine based C 2 symmetric peptidomimetics as potential HIV-1 protease inhibitors. Chakraborty TK, Ghosh S, Rao MHVR, Kunwar AC, Cho H, Ghosh AK. Tetrahedron Lett. 41 10121-10125 (2000)
  221. A quantitative structure-activity relationship study for structurally diverse HIV-1 protease inhibitors: Contribution of conformational flexibility to inhibitory activity. Gohda K. J Enzyme Inhib Med Chem 21 609-615 (2006)
  222. Accounting for Solvation Correlation Effects on the Thermodynamics of Water Networks in Protein Cavities. Barros EP, Ries B, Champion C, Rieder SR, Riniker S. J Chem Inf Model 63 1794-1805 (2023)
  223. An Improved Receptor-Based Pharmacophore Generation Algorithm Guided by Atomic Chemical Characteristics and Hybridization Types. He G, Gong B, Li J, Song Y, Li S, Lu X. Front Pharmacol 9 1463 (2018)
  224. Antiviral properties of simple difunctionalized enols targeted to the HIV-1 protease. Vaillancourt M, Sauvé G, Cohen E. Antiviral Res. 27 205-218 (1995)
  225. Can cyclic HIV protease inhibitors bind in a non-preferred form? An ab initio, DFT and MM-PB(GB)SA study. Oehme DP, Brownlee RT, Wilson DJ. J Mol Model 19 1125-1142 (2013)
  226. Chemoselective isocyanide insertion into the N-H bond using iodine-DMSO: metal-free access to substituted ureas. Bora P, Bez G. Chem. Commun. (Camb.) 54 8363-8366 (2018)
  227. Cluster analysis of hydration waters around the active sites of bacterial alanine racemase using a 2-ns MD simulation. Huang HC, Jupiter D, Qiu M, Briggs JM, Vanburen V. Biopolymers 89 210-219 (2008)
  228. Discovery of a Hidden Trypanosoma cruzi Spermidine Synthase Binding Site and Inhibitors through In Silico, In Vitro, and X-ray Crystallography. Yoshino R, Yasuo N, Hagiwara Y, Ishida T, Inaoka DK, Amano Y, Tateishi Y, Ohno K, Namatame I, Niimi T, Orita M, Kita K, Akiyama Y, Sekijima M. ACS Omega 8 25850-25860 (2023)
  229. ELIXIR-A: An Interactive Visualization Tool for Multi-Target Pharmacophore Refinement. Wang H, Mulgaonkar N, Pérez LM, Fernando S. ACS Omega 7 12707-12715 (2022)
  230. Effective lead optimization targeting the displacement of bridging receptor-ligand water molecules. Chen D, Li Y, Zhao M, Tan W, Li X, Savidge T, Guo W, Fan X. Phys Chem Chem Phys 20 24399-24407 (2018)
  231. Environmentally benign synthesis of unsymmetrical ureas and their evaluation as potential HIV-1 protease inhibitors via a computational approach. Lotha TN, Richa K, Sorhie V, Ketiyala, Nakro V, Imkongyanger, Ritse V, Rudithongru L, Namsa ND, Jamir L. Mol Divers (2023)
  232. HIV protease inhibitors: synthesis and activity of N-aryl-N'-hydroxyalkyl hydrazide pseudopeptides. Marastoni M, Baldisserotto A, Trapella C, McDonald J, Bortolotti F, Tomatis R. Eur J Med Chem 40 445-451 (2005)
  233. Illuminating the dark conformational space of macrocycles using dominant rotors. Diaz DB, Appavoo SD, Bogdanchikova AF, Lebedev Y, McTiernan TJ, Dos Passos Gomes G, Yudin AK. Nat Chem (2021)
  234. Inhibitors of HIV protease: unique non-peptide active site templates. Tait BD, Domagala J, Ellsworth EL, Ferguson D, Gajda C, Hupe D, Lunney EA, Tummino PJ. J. Mol. Recognit. 9 139-142 (1996)
  235. Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus. Dahl SL, Kalita MM, Fischer WB. Chem Biol Drug Des 91 942-950 (2018)
  236. Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines. Lane EM, Hazari N, Bernskoetter WH. Chem Sci 9 4003-4008 (2018)
  237. LAGUERRE-INTERSECTION METHOD FOR IMPLICIT SOLVATION. Hummel MH, Yu B, Simmerling C, Coutsias EA. Int J Comput Geom Appl 28 1-38 (2018)
  238. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations. Bruce Macdonald HE, Cave-Ayland C, Ross GA, Essex JW. J Chem Theory Comput 14 6586-6597 (2018)
  239. Liquid-phase parallel synthesis of ureas. Huang KT, Sun CM. Bioorg. Med. Chem. Lett. 11 271-273 (2001)
  240. One-pot catalytic synthesis of urea derivatives from alkyl ammonium carbamates using low concentrations of CO2. Koizumi H, Takeuchi K, Matsumoto K, Fukaya N, Sato K, Uchida M, Matsumoto S, Hamura S, Choi JC. Commun Chem 4 66 (2021)
  241. Screening for production of proteinase inhibitors by Antarctic Streptomycetes. Dimitrova-Stefanova DB, Gocheva BT. J. Basic Microbiol. 58 1033-1042 (2018)
  242. Synthesis of 1,3-dioxo-hexahydropyrido[1,2-c][1,3]diazepine carboxylates, a new bicyclic skeleton formed by ring expansion-RCM methodology. Dieltiens N, Claeys DD, Allaert B, Verpoort F, Stevens CV. Chem. Commun. (Camb.) 4477-4478 (2005)
  243. TWN-FS method: A novel fragment screening method for drug discovery. Yoon HR, Park GJ, Balupuri A, Kang NS. Comput Struct Biotechnol J 21 4683-4696 (2023)
  244. Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints. Leidner F, Kurt Yilmaz N, Schiffer CA. J Chem Inf Model 59 3679-3691 (2019)
  245. The role of hydration effects in 5-fluorouridine binding to SOD1: insight from a new 3D-RISM-KH based protocol for including structural water in docking simulations. Hinge VK, Blinov N, Roy D, Wishart DS, Kovalenko A. J. Comput. Aided Mol. Des. 33 913-926 (2019)
  246. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations. Wahl J, Smieško M. ChemMedChem 13 1325-1335 (2018)
  247. Water Networks in Complexes between Proteins and FDA-Approved Drugs. Samways ML, Bruce Macdonald HE, Taylor RD, Essex JW. J Chem Inf Model 63 387-396 (2023)
  248. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. Eberhardt J, Forli S. J Chem Theory Comput 19 2535-2556 (2023)