1hna Citations

Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity.

J Mol Biol 238 815-32 (1994)
Related entries: 1hnb, 1hnc

Cited: 65 times
EuropePMC logo PMID: 8182750

Abstract

The structures of three crystal forms of the class mu human glutathione transferase GSTM2-2 have been determined. X-ray phase information was obtained independently from molecular replacement and from anomalous scattering by a single isomorphous derivative. One crystal form contains a single monomer in the asymmetric unit and has been refined to 1.85 A with an overall R factor of 22.6%. The second form contains a single dimer in the asymmetric unit and has been refined to 3.5 A with an R factor of 20.7%. The third form contains two dimers in the asymmetric unit and has been refined to 3.0 A with an R factor of 25.0%. Although all three crystal forms were grown from solutions that contained glutathione-dinitrobenzene, electron density can only be seen for the glutathione portion of the ligand. The first 202 residues in the seven crystallographically independent monomers of GSTM2-2 are essentially identical in structure. However, heterogeneity in the conformation of the side-chain of Tyr115 is observed in the different monomers. The tertiary structure of residues 1-202 is similar to that of the corresponding region in the class mu isoform of glutathione transferase from rat, GST3-3 (Ji et al. (1992), Biochemistry, 31, 10169-10184). However, significant differences in the conformation of the two enzymes have been observed in the region of the active site that binds hydrophobic substrates. These differences include a 2 A shift in the carboxy terminus of a helix, and significant heterogeneity in the conformation of the last 15 residues of the carboxy terminus. The conformation and degree of disorder of the last 15 residues correlates with the extent of protein-protein contacts within the unit cell.

Articles - 1hna mentioned but not cited (5)

  1. Sequence variations within protein families are linearly related to structural variations. Koehl P, Levitt M. J Mol Biol 323 551-562 (2002)
  2. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. Wang S, Gu J, Larson SA, Whitten ST, Hilser VJ. J Mol Biol 381 1184-1201 (2008)
  3. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  4. Chimeric glutathione S-transferases containing inserts of kininogen peptides: potential novel protein therapeutics. Bentley AA, Merkulov SM, Peng Y, Rozmarynowycz R, Qi X, Pusztai-Carey M, Merrick WC, Yee VC, McCrae KR, Komar AA. J Biol Chem 287 22142-22150 (2012)
  5. Structure of Escherichia coli Grx2 in complex with glutathione: a dual-function hybrid of glutaredoxin and glutathione S-transferase. Ye J, Nadar SV, Li J, Rosen BP. Acta Crystallogr D Biol Crystallogr 70 1907-1913 (2014)


Reviews citing this publication (7)

  1. Glutathione transferases, regulators of cellular metabolism and physiology. Board PG, Menon D. Biochim Biophys Acta 1830 3267-3288 (2013)
  2. Marine glutathione S-transferases. Blanchette B, Feng X, Singh BR. Mar Biotechnol (NY) 9 513-542 (2007)
  3. Mammalian glutathione S-transferase: regulation of an enzyme system to achieve chemotherapeutic efficacy. Gulick AM, Fahl WE. Pharmacol Ther 66 237-257 (1995)
  4. Insights into the catalytic mechanism of glutathione S-transferase: the lesson from Schistosoma haematobium. Angelucci F, Baiocco P, Brunori M, Gourlay L, Morea V, Bellelli A. Structure 13 1241-1246 (2005)
  5. Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Dulhunty AF, Hewawasam R, Liu D, Casarotto MG, Board PG. Drug Metab Rev 43 236-252 (2011)
  6. Modeling the active sites of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes. De Groot MJ, Vermeulen NP. Drug Metab Rev 29 747-799 (1997)
  7. Strategies to characterize the mechanisms of action and the active sites of glutathione S-transferases: a review. van der Aar EM, Tan KT, Commandeur JN, Vermeulen NP. Drug Metab Rev 30 569-643 (1998)

Articles citing this publication (53)

  1. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Kanaoka Y, Ago H, Inagaki E, Nanayama T, Miyano M, Kikuno R, Fujii Y, Eguchi N, Toh H, Urade Y, Hayaishi O. Cell 90 1085-1095 (1997)
  2. Crystal structure of a theta-class glutathione transferase. Wilce MC, Board PG, Feil SC, Parker MW. EMBO J 14 2133-2143 (1995)
  3. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, Palme K, Schell J, Koelln I, Bartunik HD, Bieseler B. J Mol Biol 255 289-309 (1996)
  4. Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Cameron AD, Sinning I, L'Hermite G, Olin B, Board PG, Mannervik B, Jones TA. Structure 3 717-727 (1995)
  5. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. Oakley AJ, Lo Bello M, Battistoni A, Ricci G, Rossjohn J, Villar HO, Parker MW. J Mol Biol 274 84-100 (1997)
  6. The limit of accuracy of protein modeling: influence of crystal packing on protein structure. Eyal E, Gerzon S, Potapov V, Edelman M, Sobolev V. J Mol Biol 351 431-442 (2005)
  7. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. Björnestedt R, Stenberg G, Widersten M, Board PG, Sinning I, Jones TA, Mannervik B. J Mol Biol 247 765-773 (1995)
  8. The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B. Oakley AJ, Harnnoi T, Udomsinprasert R, Jirajaroenrat K, Ketterman AJ, Wilce MC. Protein Sci 10 2176-2185 (2001)
  9. Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F. J Mol Biol 348 1163-1176 (2005)
  10. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins. Poornima CS, Dean PM. J Comput Aided Mol Des 9 521-531 (1995)
  11. Crystallization, structural determination and analysis of a novel parasite vaccine candidate: Fasciola hepatica glutathione S-transferase. Rossjohn J, Feil SC, Wilce MC, Sexton JL, Spithill TW, Parker MW. J Mol Biol 273 857-872 (1997)
  12. The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases. Allardyce CS, McDonagh PD, Lian LY, Wolf CR, Roberts GC. Biochem J 343 Pt 3 525-531 (1999)
  13. Native dimer stabilizes the subunit tertiary structure of porcine class pi glutathione S-transferase. Erhardt J, Dirr H. Eur J Biochem 230 614-620 (1995)
  14. Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. Hansson LO, Bolton-Grob R, Massoud T, Mannervik B. J Mol Biol 287 265-276 (1999)
  15. Proton release on binding of glutathione to alpha, Mu and Delta class glutathione transferases. Caccuri AM, Antonini G, Board PG, Parker MW, Nicotra M, Lo Bello M, Federici G, Ricci G. Biochem J 344 Pt 2 419-425 (1999)
  16. Conformational changes affect binding and catalysis by ester-hydrolysing antibodies. Lindner AB, Eshhar Z, Tawfik DS. J Mol Biol 285 421-430 (1999)
  17. Polymorphism of human mu class glutathione transferases. Tetlow N, Robinson A, Mantle T, Board P. Pharmacogenetics 14 359-368 (2004)
  18. Characterization of the electrophile binding site and substrate binding mode of the 26-kDa glutathione S-transferase from Schistosoma japonicum. Cardoso RM, Daniels DS, Bruns CM, Tainer JA. Proteins 51 137-146 (2003)
  19. Location of a potential transport binding site in a sigma class glutathione transferase by x-ray crystallography. Ji X, von Rosenvinge EC, Johnson WW, Armstrong RN, Gilliland GL. Proc Natl Acad Sci U S A 93 8208-8213 (1996)
  20. Glutathione transferase: new model for glutathione activation. Dourado DF, Fernandes PA, Mannervik B, Ramos MJ. Chemistry 14 9591-9598 (2008)
  21. Crystal structure of a new class of glutathione transferase from the model human hookworm nematode Heligmosomoides polygyrus. Schuller DJ, Liu Q, Kriksunov IA, Campbell AM, Barrett J, Brophy PM, Hao Q. Proteins 61 1024-1031 (2005)
  22. Heterologous expression, purification and characterization of rat class theta glutathione transferase T2-2. Jemth P, Stenberg G, Chaga G, Mannervik B. Biochem J 316 ( Pt 1) 131-136 (1996)
  23. Use of a fusion protein to obtain crystals suitable for X-ray analysis: crystallization of a GST-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF. Kuge M, Fujii Y, Shimizu T, Hirose F, Matsukage A, Hakoshima T. Protein Sci 6 1783-1786 (1997)
  24. Structural determinants in domain II of human glutathione transferase M2-2 govern the characteristic activities with aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine, and 1,2-dichloro-4-nitrobenzene. Hansson LO, Bolton-Grob R, Widersten M, Mannervik B. Protein Sci 8 2742-2750 (1999)
  25. The three-dimensional structure of an avian class-mu glutathione S-transferase, cGSTM1-1 at 1.94 A resolution. Sun YJ, Kuan IC, Tam MF, Hsiao CD. J Mol Biol 278 239-252 (1998)
  26. Determination of a binding site for a non-substrate ligand in mammalian cytosolic glutathione S-transferases by means of fluorescence-resonance energy transfer. Sluis-Cremer N, Naidoo NN, Kaplan WH, Manoharan TH, Fahl WE, Dirr HW. Eur J Biochem 241 484-488 (1996)
  27. Homology model for the human GSTT2 Theta class glutathione transferase. Chelvanayagam G, Wilce MC, Parker MW, Tan KL, Board PG. Proteins 27 118-130 (1997)
  28. Ligand-based protein alignment and isozyme specificity of glutathione S-transferase inhibitors. Koehler RT, Villar HO, Bauer KE, Higgins DL. Proteins 28 202-216 (1997)
  29. Amino acid sequencing, molecular cloning and modelling of the chick liver class-theta glutathione S-transferase CL1. Hsiao CD, Martsen EO, Lee JY, Tsai SP, Tam MF. Biochem J 312 ( Pt 1) 91-98 (1995)
  30. Caged glutathione - triggering protein interaction by light. Gatterdam V, Stoess T, Menge C, Heckel A, Tampé R. Angew Chem Int Ed Engl 51 3960-3963 (2012)
  31. The three-dimensional structure of a class-Pi glutathione S-transferase complexed with glutathione: the active-site hydration provides insights into the reaction mechanism. Párraga A, García-Sáez I, Walsh SB, Mantle TJ, Coll M. Biochem J 333 ( Pt 3) 811-816 (1998)
  32. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1. Chern MK, Wu TC, Hsieh CH, Chou CC, Liu LF, Kuan IC, Yeh YH, Hsiao CD, Tam MF. J Mol Biol 300 1257-1269 (2000)
  33. Echinococcus granulosus: molecular cloning and phylogenetic analysis of an inducible glutathione S-transferase. Fernández V, Chalar C, Martínez C, Musto H, Zaha A, Fernández C. Exp Parasitol 96 190-194 (2000)
  34. Solution structure of the carboxyl terminus of a human class Mu glutathione S-transferase: NMR assignment strategies in large proteins. McCallum SA, Hitchens TK, Rule GS. J Mol Biol 285 2119-2132 (1999)
  35. Tyrosine 8 contributes to catalysis but is not required for activity of rat liver glutathione S-transferase, 1-1. Wang J, Barycki JJ, Colman RF. Protein Sci 5 1032-1042 (1996)
  36. Crystal structure of a murine alpha-class glutathione S-transferase involved in cellular defense against oxidative stress. Krengel U, Schröter KH, Hoier H, Arkema A, Kalk KH, Zimniak P, Dijkstra BW. FEBS Lett 422 285-290 (1998)
  37. Dissection of the inhibition of cardiac ryanodine receptors by human glutathione transferase GSTM2-2. Liu D, Hewawasam R, Pace SM, Gallant EM, Casarotto MG, Dulhunty AF, Board PG. Biochem Pharmacol 77 1181-1193 (2009)
  38. Purification and crystallization of a schistosomal glutathione S-transferase. McTigue MA, Bernstein SL, Williams DR, Tainer JA. Proteins 22 55-57 (1995)
  39. The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Hewawasam R, Liu D, Casarotto MG, Dulhunty AF, Board PG. Biochem Pharmacol 80 381-388 (2010)
  40. Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Hwang DD, Liu LF, Kuan IC, Lin LY, Tam TC, Tam MF. Biochem J 338 ( Pt 2) 335-342 (1999)
  41. Estradiol metabolites as isoform-specific inhibitors of human glutathione S-transferases. Abel EL, Lyon RP, Bammler TK, Verlinde CL, Lau SS, Monks TJ, Eaton DL. Chem Biol Interact 151 21-32 (2004)
  42. Mechanism of an insect glutathione S-transferase: kinetic analysis supporting a rapid equilibrium random sequential mechanism with housefly I1 isoform. Nay B, Fournier D, Baudras A, Baudras B. Insect Biochem Mol Biol 29 71-79 (1999)
  43. On the reaction mechanism of class Pi glutathione S-transferase. Orozco M, Vega C, Parraga A, García-Sáez I, Coll M, Walsh S, Mantle TJ, Javier Luque F. Proteins 28 530-542 (1997)
  44. Unambiguous correlations of backbone amide and aliphatic gamma resonances in deuterated proteins. McCallum SA, Hitchens TK, Rule GS. J Magn Reson 134 350-354 (1998)
  45. Rat glutathione S-transferase M4-4: an isoenzyme with unique structural features including a redox-reactive cysteine-115 residue that forms mixed disulphides with glutathione. Cheng H, Tchaikovskaya T, Tu YS, Chapman J, Qian B, Ching WM, Tien M, Rowe JD, Patskovsky YV, Listowsky I, Tu CP. Biochem J 356 403-414 (2001)
  46. Structural studies of a human pi class glutathione S-transferase. Photoaffinity labeling of the active site and target size analysis. Whalen R, Kempner ES, Boyer TD. Biochem Pharmacol 52 281-288 (1996)
  47. High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer-tetramer transition and a novel ligand-binding site. Perbandt M, Eberle R, Fischer-Riepe L, Cang H, Liebau E, Betzel C. J Struct Biol 191 365-375 (2015)
  48. Mu-class glutathione transferase from Xenopus laevis: molecular cloning, expression and site-directed mutagenesis. De Luca A, Favaloro B, Angelucci S, Sacchetta P, Di Ilio C. Biochem J 365 685-691 (2002)
  49. Crystal structure of a class-mu glutathione S-transferase from whiteleg shrimp Litopenaeus vannamei: structural changes in the xenobiotic binding H-site may alter the spectra of molecules bound. Juárez-Martínez AB, Sotelo-Mundo RR, Rudiño-Piñera E. J Biochem Mol Toxicol 31 (2017)
  50. Guinea pig liver Mu-class glutathione S-transferase M1-2 cross-reacts with antibodies to both rat Mu- and theta-class glutathione S-transferases. Hiratsuka A, Ogura K, Fujioka H, Sakamoto Y, Okuda H, Wada K, Tanaka T, Nishiyama T, Watabe T. Arch Biochem Biophys 354 188-196 (1998)
  51. Regio- and enantioselectivities in epoxide conjugations are modulated by residue 210 in Mu class glutathione transferases. Ivarsson Y, Mannervik B. Protein Eng Des Sel 18 607-616 (2005)
  52. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes. Hewawasam RP, Liu D, Casarotto MG, Board PG, Dulhunty AF. PLoS One 11 e0162415 (2016)
  53. Catalytic role of the alpha-carboxylate of the Glu residue of glutathione in glutathione S-transferases. Zheng YJ, Ornstein RL. J Biomol Struct Dyn 14 231-233 (1996)


Related citations provided by authors (2)