1fmo Citations

Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

Biochemistry 36 4438-48 (1997)
Cited: 85 times
EuropePMC logo PMID: 9109651

Abstract

The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.

Reviews - 1fmo mentioned but not cited (2)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  2. Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Smorodinsky-Atias K, Soudah N, Engelberg D. Cells 9 E129 (2020)

Articles - 1fmo mentioned but not cited (10)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. TRAF family proteins link PKR with NF-kappa B activation. Gil J, García MA, Gomez-Puertas P, Guerra S, Rullas J, Nakano H, Alcamí J, Esteban M. Mol Cell Biol 24 4502-4512 (2004)
  3. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jørgensen TJ, Biondi RM, Frödin M. EMBO J 26 2251-2261 (2007)
  4. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Dey M, Trieselmann B, Locke EG, Lu J, Cao C, Dar AC, Krishnamoorthy T, Dong J, Sicheri F, Dever TE. Mol Cell Biol 25 3063-3075 (2005)
  5. Cotranslational cis-phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase. Keshwani MM, Klammt C, von Daake S, Ma Y, Kornev AP, Choe S, Insel PA, Taylor SS. Proc Natl Acad Sci U S A 109 E1221-9 (2012)
  6. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. Komolov KE, Bhardwaj A, Benovic JL. J Biol Chem 290 20629-20647 (2015)
  7. Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity. Moraes EC, Meirelles GV, Honorato RV, de Souza Tde A, de Souza EE, Murakami MT, de Oliveira PS, Kobarg J. Molecules 20 1176-1191 (2015)
  8. Structural studies of B-type Aurora kinase inhibitors using computational methods. Neaz M, Muddassar M, Pasha F, Cho SJ. Acta Pharmacol Sin 31 244-258 (2010)
  9. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease. Leis S, Zacharias M. PLoS One 7 e48008 (2012)
  10. Calculating pKa values in the cAMP-dependent protein kinase: the effect of conformational change and ligand binding. Bjarnadottir U, Nielsen JE. Protein Sci 19 2485-2497 (2010)


Reviews citing this publication (11)

  1. Protein kinases: evolution of dynamic regulatory proteins. Taylor SS, Kornev AP. Trends Biochem Sci 36 65-77 (2011)
  2. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Darling AL, Uversky VN. Front Genet 9 158 (2018)
  3. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Chem Rev 116 6424-6462 (2016)
  4. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Smith CM, Radzio-Andzelm E, Madhusudan, Akamine P, Taylor SS. Prog Biophys Mol Biol 71 313-341 (1999)
  5. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Stratton MM, Chao LH, Schulman H, Kuriyan J. Curr Opin Struct Biol 23 292-301 (2013)
  6. Revisiting protein kinase-substrate interactions: Toward therapeutic development. de Oliveira PS, Ferraz FA, Pena DA, Pramio DT, Morais FA, Schechtman D. Sci Signal 9 re3 (2016)
  7. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Ten Eyck L, Narayana N. Pharmacol Ther 82 133-141 (1999)
  8. Peptides targeting protein kinases: strategies and implications. Kaidanovich-Beilin O, Eldar-Finkelman H. Physiology (Bethesda) 21 411-418 (2006)
  9. Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Sim CH, Gabriel K, Mills RD, Culvenor JG, Cheng HC. Hum Mutat 33 1408-1422 (2012)
  10. Protein kinase inhibition: natural and synthetic variations on a theme. Taylor SS, Radzio-Andzelm E. Curr Opin Chem Biol 1 219-226 (1997)
  11. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol Ther 82 157-164 (1999)

Articles citing this publication (62)

  1. The importance of intrinsic disorder for protein phosphorylation. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. Nucleic Acids Res 32 1037-1049 (2004)
  2. A cannabinoid link between mitochondria and memory. Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Pagano Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, García-Fernández MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy JW, Cota D, Lopez-Rodriguez ML, Barreda-Gómez G, Massa F, Grandes P, Bénard G, Marsicano G. Nature 539 555-559 (2016)
  3. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS. Proc Natl Acad Sci U S A 95 9849-9854 (1998)
  4. Identification of protein-protein interfaces by decreased amide proton solvent accessibility. Mandell JG, Falick AM, Komives EA. Proc Natl Acad Sci U S A 95 14705-14710 (1998)
  5. Allosteric cooperativity in protein kinase A. Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G. Proc Natl Acad Sci U S A 105 506-511 (2008)
  6. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA. J Biol Chem 277 42419-42422 (2002)
  7. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. Jacobs MD, Black J, Futer O, Swenson L, Hare B, Fleming M, Saxena K. J Biol Chem 280 13728-13734 (2005)
  8. A-kinase-interacting protein localizes protein kinase A in the nucleus. Sastri M, Barraclough DM, Carmichael PT, Taylor SS. Proc Natl Acad Sci U S A 102 349-354 (2005)
  9. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Structure 5 1627-1637 (1997)
  10. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Narayana N, Cox S, Nguyen-huu X, Ten Eyck LF, Taylor SS. Structure 5 921-935 (1997)
  11. Crystal structure of an inactive Akt2 kinase domain. Huang X, Begley M, Morgenstern KA, Gu Y, Rose P, Zhao H, Zhu X. Structure 11 21-30 (2003)
  12. Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. Smith FD, Reichow SL, Esseltine JL, Shi D, Langeberg LK, Scott JD, Gonen T. Elife 2 e01319 (2013)
  13. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. J Clin Invest 129 2775-2791 (2019)
  14. Structural insights into mis-regulation of protein kinase A in human tumors. Cheung J, Ginter C, Cassidy M, Franklin MC, Rudolph MJ, Robine N, Darnell RB, Hendrickson WA. Proc Natl Acad Sci U S A 112 1374-1379 (2015)
  15. Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism. Yang J, Ten Eyck LF, Xuong NH, Taylor SS. J Mol Biol 336 473-487 (2004)
  16. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Shaltiel S, Cox S, Taylor SS. Proc Natl Acad Sci U S A 95 484-491 (1998)
  17. Crystal structures of interleukin-2 tyrosine kinase and their implications for the design of selective inhibitors. Brown K, Long JM, Vial SC, Dedi N, Dunster NJ, Renwick SB, Tanner AJ, Frantz JD, Fleming MA, Cheetham GM. J Biol Chem 279 18727-18732 (2004)
  18. Identification of novel glycogen synthase kinase-3beta substrate-interacting residues suggests a common mechanism for substrate recognition. Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H. J Biol Chem 281 30621-30630 (2006)
  19. Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Xue B, Jeffers V, Sullivan WJ, Uversky VN. Mol Biosyst 9 645-657 (2013)
  20. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. Homan KT, Larimore KM, Elkins JM, Szklarz M, Knapp S, Tesmer JJ. ACS Chem Biol 10 310-319 (2015)
  21. Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation. Lee T, Hoofnagle AN, Resing KA, Ahn NG. J Mol Biol 353 600-612 (2005)
  22. Structural characterization of protein kinase A as a function of nucleotide binding. Hydrogen-deuterium exchange studies using matrix-assisted laser desorption ionization-time of flight mass spectrometry detection. Andersen MD, Shaffer J, Jennings PA, Adams JA. J Biol Chem 276 14204-14211 (2001)
  23. The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism. Gógl G, Schneider KD, Yeh BJ, Alam N, Nguyen Ba AN, Moses AM, Hetényi C, Reményi A, Weiss EL. PLoS Biol 13 e1002146 (2015)
  24. Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix. Wu J, Yang J, Kannan N, Madhusudan, Xuong NH, Ten Eyck LF, Taylor SS. Protein Sci 14 2871-2879 (2005)
  25. Substrate enhances the sensitivity of type I protein kinase a to cAMP. Viste K, Kopperud RK, Christensen AE, Døskeland SO. J Biol Chem 280 13279-13284 (2005)
  26. cAMPr: A single-wavelength fluorescent sensor for cyclic AMP. Hackley CR, Mazzoni EO, Blau J. Sci Signal 11 eaah3738 (2018)
  27. Predicted location and limited accessibility of protein kinase A phosphorylation site on Na-K-ATPase. Sweadner KJ, Feschenko MS. Am J Physiol Cell Physiol 280 C1017-26 (2001)
  28. Charge optimization of the interface between protein kinases and their ligands. Sims PA, Wong CF, McCammon JA. J Comput Chem 25 1416-1429 (2004)
  29. Intrinsically disordered linkers control tethered kinases via effective concentration. Dyla M, Kjaergaard M. Proc Natl Acad Sci U S A 117 21413-21419 (2020)
  30. Adenosine-5'-carboxylic acid peptidyl derivatives as inhibitors of protein kinases. Loog M, Uri A, Raidaru G, Järv J, Ek P. Bioorg Med Chem Lett 9 1447-1452 (1999)
  31. Phosphorylation-dependent changes in structure and dynamics in ERK2 detected by SDSL and EPR. Hoofnagle AN, Stoner JW, Lee T, Eaton SS, Ahn NG. Biophys J 86 395-403 (2004)
  32. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Huang Z, Wong CF, Wheeler RA. Proteins 71 440-454 (2008)
  33. Docking flexible peptide to flexible protein by molecular dynamics using two implicit-solvent models: an evaluation in protein kinase and phosphatase systems. Huang Z, Wong CF. J Phys Chem B 113 14343-14354 (2009)
  34. Phosphorylation of serine residues in histidine-tag sequences attached to recombinant protein kinases: a cause of heterogeneity in mass and complications in function. Du P, Loulakis P, Luo C, Mistry A, Simons SP, LeMotte PK, Rajamohan F, Rafidi K, Coleman KG, Geoghegan KF, Xie Z. Protein Expr Purif 44 121-129 (2005)
  35. Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases. Meharena HS, Fan X, Ahuja LG, Keshwani MM, McClendon CL, Chen AM, Adams JA, Taylor SS. PLoS Biol 14 e2000127 (2016)
  36. Conformational selection of protein kinase A revealed by flexible-ligand flexible-protein docking. Huang Z, Wong CF. J Comput Chem 30 631-644 (2009)
  37. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Structure 23 2331-2340 (2015)
  38. The CDK-activating kinase (Cak1p) from budding yeast has an unusual ATP-binding pocket. Enke DA, Kaldis P, Holmes JK, Solomon MJ. J Biol Chem 274 1949-1956 (1999)
  39. Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. Smith CA, Shi CA, Chroust MK, Bliska TE, Kelly MJS, Jacobson MP, Kortemme T. Structure 21 54-64 (2013)
  40. Kinase conformations: a computational study of the effect of ligand binding. Helms V, McCammon JA. Protein Sci 6 2336-2343 (1997)
  41. Syk inhibits the activity of protein kinase A by phosphorylating tyrosine 330 of the catalytic subunit. Yu S, Huang H, Iliuk A, Wang WH, Jayasundera KB, Tao WA, Post CB, Geahlen RL. J Biol Chem 288 10870-10881 (2013)
  42. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. Nakayama A, Albarrán-Juárez J, Liang G, Roquid KA, Iring A, Tonack S, Chen M, Müller OJ, Weinstein LS, Offermanns S. JCI Insight 5 140485 (2020)
  43. Comprehensive Characterization of the Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. Wu Z, Jin Y, Chen B, Gugger MK, Wilkinson-Johnson CL, Tiambeng TN, Jin S, Ge Y. J Am Soc Mass Spectrom 30 2561-2570 (2019)
  44. Phosphorylation by protein kinase A disassembles the caspase-9 core. Serrano BP, Hardy JA. Cell Death Differ 25 1025-1039 (2018)
  45. The Scaffold Protein Axin Promotes Signaling Specificity within the Wnt Pathway by Suppressing Competing Kinase Reactions. Gavagan M, Fagnan E, Speltz EB, Zalatan JG. Cell Syst 10 515-525.e5 (2020)
  46. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Ung MU, Lu B, McCammon JA. Biopolymers 81 428-439 (2006)
  47. Design and synthesis of inositolphosphoglycan putative insulin mediators. López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Org Biomol Chem 3 764-786 (2005)
  48. Analysis of the activating mutations within the activation loop of leukemia targets Flt-3 and c-Kit based on protein homology modeling. Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L. J Mol Graph Model 23 153-165 (2004)
  49. Biochemical and biophysical investigations of the interaction between human glucokinase and pro-apoptotic BAD. Rexford A, Zorio DA, Miller BG. PLoS One 12 e0171587 (2017)
  50. Characterization of a Threonine-Rich Cluster in Hepatitis C Virus Nonstructural Protein 5A and Its Contribution to Hyperphosphorylation. Schenk C, Meyrath M, Warnken U, Schnölzer M, Mier W, Harak C, Lohmann V. J Virol 92 e00737-18 (2018)
  51. Expression and biochemical characterization of the Plasmodium falciparum protein kinase A catalytic subunit. Wurtz N, Pastorino B, Almeras L, Briolant S, Villard C, Parzy D. Parasitol Res 104 1299-1305 (2009)
  52. Molecular Basis of the Mechanisms Controlling MASTL. Hermida D, Mortuza GB, Pedersen AK, Pozdnyakova I, Nguyen TTTN, Maroto M, Williamson M, Ebersole T, Cazzamali G, Rand K, Olsen JV, Malumbres M, Montoya G. Mol Cell Proteomics 19 326-343 (2020)
  53. Theileria highjacks JNK2 into a complex with the macroschizont GPI (GlycosylPhosphatidylInositol)-anchored surface protein p104. Latré De Laté P, Haidar M, Ansari H, Tajeri S, Szarka E, Alexa A, Woods K, Reményi A, Pain A, Langsley G. Cell Microbiol 21 e12973 (2019)
  54. A new method for the gradient-based optimization of molecular complexes. Fuhrmann J, Rurainski A, Lenhof HP, Neumann D. J Comput Chem 30 1371-1378 (2009)
  55. Biochemical and structural characterization of a novel cooperative binding mode by Pit-1 with CATT repeats in the macrophage migration inhibitory factor promoter. Agarwal S, Cho TY. Nucleic Acids Res 46 929-941 (2018)
  56. Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology. Vos WL, Vaughan S, Lall PY, McCaffrey JG, Wysocka-Kapcinska M, Findlay JB. Eur Biophys J 39 679-688 (2010)
  57. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag. Zhang M, Martin JL, Kumar M, Khairallah RJ, de Tombe PP. Am J Physiol Heart Circ Physiol 309 H1509-15 (2015)
  58. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins. Kim J, Wang Y, Li G, Veglia G. Methods Enzymol 566 35-57 (2016)
  59. An easy way for the rapid purification of recombinant proteins from Helicobacter pylori using a newly designed expression vector. Kang HL, Jo JS, Kwon SU, Song JY, Seo JH, Cho MJ, Baik SC, Youn HS, Rhee KH, Lee WK. J Microbiol 52 604-608 (2014)
  60. Establishment of screening system toward discovery of kinase inhibitors using label-free on-chip phosphorylation assays. Inamori K, Kyo M, Matsukawa K, Inoue Y, Sonoda T, Mori T, Niidome T, Katayama Y. Biosystems 97 179-185 (2009)
  61. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Front Mol Biosci 10 1215550 (2023)
  62. The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition. Gavagan M, Jameson N, Zalatan JG. Elife 12 e85444 (2023)


Related citations provided by authors (5)

  1. A Binary Complex of the Catalytic Subunit of Camp-Dependent Protein Kinase and Adenosine Further Defines Conformational Flexibility. Narayana N, Cox S, Xuong NH, Ten Eyck LF, Taylor SS Structure 5 921- (1997)
  2. Crystal Structure of the Catalytic Subunit of Camp-Dependent Protein Kinase Complexed with Mgatp and Peptide Inhibitor. Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong NH, Taylor SS, Sowadski JM Biochemistry 32 2154- (1993)
  3. Expression of the Catalytic Subunit of Camp-Dependent Protein Kinase in Escherichia Coli: Multiple Isozymes Reflect Different Phosphorylation States. Herberg FW, Bell SM, Taylor SS Protein Eng. 6 771- (1993)
  4. Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM Science 253 407- (1991)
  5. Structure of a Peptide Inhibitor Bound to the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Knighton DR, Zheng JH, Ten Eyck LF, Xuong NH, Taylor SS, Sowadski JM Science 253 414- (1991)