1fic Citations

Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen.

Structure 5 125-38 (1997)
Related entries: 1fib, 1fid

Cited: 104 times
EuropePMC logo PMID: 9016719

Abstract

Background

Blood coagulation occurs by a cascade of zymogen activation resulting from minor proteolysis. The final stage of coagulation involves thrombin generation and limited proteolysis of fibrinogen to give spontaneously polymerizing fibrin. The resulting fibrin network is covalently crosslinked by factor XIIIa to yield a stable blood clot. Fibrinogen is a 340 kDa glycoprotein composed of six polypeptide chains, (alphabetagamma)2, held together by 29 disulfide bonds. The globular C terminus of the gamma chain contains a fibrin-polymerization surface, the principal factor XIIIa crosslinking site, the platelet receptor recognition site, and a calcium-binding site. Structural information on this domain should thus prove helpful in understanding clot formation.

Results

The X-ray crystallographic structure of the 30 kDa globular C terminus of the gamma chain of human fibrinogen has been determined in one crystal form using multiple isomorphous replacement methods. The refined coordinates were used to solve the structure in two more crystal forms by molecular replacement; the crystal structures have been refined against diffraction data to either 2.5 A or 2.1 A resolution. Three domains were identified in the structure, including a C-terminal fibrin-polymerization domain (P), which contains a single calcium-binding site and a deep binding pocket that provides the polymerization surface. The overall structure has a pronounced dipole moment, and the C-terminal residues appear highly flexible.

Conclusion

The polymerization domain in the gamma chain is the most variable among a family of fibrinogen-related proteins and contains many acidic residues. These residues contribute to the molecular dipole moment in the structure, which may allow electrostatic steering to guide the alignment of fibrin monomers during the polymerization process. The flexibility of the C-terminal residues, which contain one of the factor XIIIa crosslinking sites and the platelet receptor recognition site, may be important in the function of this domain.

Articles - 1fic mentioned but not cited (5)

  1. Fibrinogen-elongated gamma chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. Lancellotti S, Rutella S, De Filippis V, Pozzi N, Rocca B, De Cristofaro R. J. Biol. Chem. 283 30193-30204 (2008)
  2. Predicting protein flexibility through the prediction of local structures. Bornot A, Etchebest C, de Brevern AG. Proteins 79 839-852 (2011)
  3. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Ryu JK, Rafalski VA, Meyer-Franke A, Adams RA, Poda SB, Rios Coronado PE, Pedersen LØ, Menon V, Baeten KM, Sikorski SL, Bedard C, Hanspers K, Bardehle S, Mendiola AS, Davalos D, Machado MR, Chan JP, Plastira I, Petersen MA, Pfaff SJ, Ang KK, Hallenbeck KK, Syme C, Hakozaki H, Ellisman MH, Swanson RA, Zamvil SS, Arkin MR, Zorn SH, Pico AR, Mucke L, Freedman SB, Stavenhagen JB, Nelson RB, Akassoglou K. Nat. Immunol. 19 1212-1223 (2018)
  4. αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible. Zafar H, Shang Y, Li J, David GA, Fernandez JP, Molina H, Filizola M, Coller BS. Blood Adv 1 417-428 (2017)
  5. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)


Reviews citing this publication (23)

  1. Fibrinogen and fibrin structure and functions. Mosesson MW. J. Thromb. Haemost. 3 1894-1904 (2005)
  2. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Guthold M, Liu W, Sparks EA, Jawerth LM, Peng L, Falvo M, Superfine R, Hantgan RR, Lord ST. Cell Biochem. Biophys. 49 165-181 (2007)
  3. The molecular basis of quantitative fibrinogen disorders. Asselta R, Duga S, Tenchini ML. J. Thromb. Haemost. 4 2115-2129 (2006)
  4. X-ray crystallographic studies on fibrinogen and fibrin. Doolittle RF. J. Thromb. Haemost. 1 1559-1565 (2003)
  5. The thrombin-fibrinogen interaction. Scheraga HA. Biophys. Chem. 112 117-130 (2004)
  6. Correlating structure and function during the evolution of fibrinogen-related domains. Doolittle RF, McNamara K, Lin K. Protein Sci. 21 1808-1823 (2012)
  7. Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography. Doolittle RF. Blood Rev. 17 33-41 (2003)
  8. Fibrin Formation, Structure and Properties. Weisel JW, Litvinov RI. Subcell. Biochem. 82 405-456 (2017)
  9. Cross-linked gamma-chains in fibrin fibrils bridge 'transversely' between strands: yes. Mosesson MW. J. Thromb. Haemost. 2 388-393 (2004)
  10. Three-dimensional structural studies on fragments of fibrinogen and fibrin. Doolittle RF, Spraggon G, Everse SJ. Curr. Opin. Struct. Biol. 8 792-798 (1998)
  11. Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no. Weisel JW. J. Thromb. Haemost. 2 394-399 (2004)
  12. Crystal structure studies on fibrinogen and fibrin. Doolittle RF, Yang Z, Mochalkin I. Ann N Y Acad Sci 936 31-43 (2001)
  13. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Zuliani-Alvarez L, Midwood KS. Adv Wound Care (New Rochelle) 4 273-285 (2015)
  14. Structure and function of human fibrinogen inferred from dysfibrinogens. Matsuda M, Sugo T. Int. J. Hematol. 76 Suppl 1 352-360 (2002)
  15. Hereditary Hypofibrinogenemia with Hepatic Storage. Asselta R, Paraboschi EM, Duga S. Int J Mol Sci 21 E7830 (2020)
  16. [Molecular mechanisms of the polymerization of fibrin and the formation of its three-dimensional network] Lugovskoĭ EV, Gritsenko PG, Komisarenko SV. Bioorg. Khim. 35 437-456 (2009)
  17. The role of Fibrinogen-like proteins in Cancer. Yu J, Li J, Shen J, Du F, Wu X, Li M, Chen Y, Cho CH, Li X, Xiao Z, Zhao Y. Int J Biol Sci 17 1079-1087 (2021)
  18. Fibrinogen and Fibrin. Litvinov RI, Pieters M, de Lange-Loots Z, Weisel JW. Subcell Biochem 96 471-501 (2021)
  19. The conversion of fibrinogen to fibrin: A brief history of some key events. Doolittle RF. Matrix Biol. 60-61 5-7 (2017)
  20. Cryptic epitopes and functional diversity in extracellular proteins. Mortimer GM, Minchin RF. Int. J. Biochem. Cell Biol. 81 112-120 (2016)
  21. New insights into fibrin (ogen) structure and function. Everse SJ. Vox Sang. 83 Suppl 1 375-382 (2002)
  22. Extension of the Human Fibrinogen Database with Detailed Clinical Information-The αC-Connector Segment. Sovova Z, Pecankova K, Majek P, Suttnar J. Int J Mol Sci 23 132 (2021)
  23. MFAP4-Mediated Effects in Elastic Fiber Homeostasis, Integrin Signaling and Cancer, and Its Role in Teleost Fish. Mohammadi A, Sorensen GL, Pilecki B. Cells 11 2115 (2022)

Articles citing this publication (76)

  1. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Spraggon G, Everse SJ, Doolittle RF. Nature 389 455-462 (1997)
  2. Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. Springer TA, Zhu J, Xiao T. J. Cell Biol. 182 791-800 (2008)
  3. Structural insights into the innate immune recognition specificities of L- and H-ficolins. Garlatti V, Belloy N, Martin L, Lacroix M, Matsushita M, Endo Y, Fujita T, Fontecilla-Camps JC, Arlaud GJ, Thielens NM, Gaboriaud C. EMBO J. 26 623-633 (2007)
  4. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Yang Z, Mochalkin I, Doolittle RF. Proc. Natl. Acad. Sci. U.S.A. 97 14156-14161 (2000)
  5. The crystal structure of modified bovine fibrinogen. Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C. Proc. Natl. Acad. Sci. U.S.A. 97 85-90 (2000)
  6. The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Kairies N, Beisel HG, Fuentes-Prior P, Tsuda R, Muta T, Iwanaga S, Bode W, Huber R, Kawabata S. Proc. Natl. Acad. Sci. U.S.A. 98 13519-13524 (2001)
  7. Human L-ficolin: plasma levels, sugar specificity, and assignment of its lectin activity to the fibrinogen-like (FBG) domain. Le Y, Lee SH, Kon OL, Lu J. FEBS Lett. 425 367-370 (1998)
  8. The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Pratt KP, Côté HC, Chung DW, Stenkamp RE, Davie EW. Proc. Natl. Acad. Sci. U.S.A. 94 7176-7181 (1997)
  9. Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly-->Arg mutation. Brennan SO, Wyatt J, Medicina D, Callea F, George PM. Am. J. Pathol. 157 189-196 (2000)
  10. Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Conklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, Walker KM, Chen LH, Wattler S, Nehls M, Lewis KB. Genomics 62 477-482 (1999)
  11. Simple sequences are rare in the Protein Data Bank. Huntley MA, Golding GB. Proteins 48 134-140 (2002)
  12. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Barton WA, Tzvetkova-Robev D, Miranda EP, Kolev MV, Rajashankar KR, Himanen JP, Nikolov DB. Nat. Struct. Mol. Biol. 13 524-532 (2006)
  13. Cl- regulates the structure of the fibrin clot. Di Stasio E, Nagaswami C, Weisel JW, Di Cera E. Biophys. J. 75 1973-1979 (1998)
  14. Mechanism of fibrin(ogen) forced unfolding. Zhmurov A, Brown AE, Litvinov RI, Dima RI, Weisel JW, Barsegov V. Structure 19 1615-1624 (2011)
  15. Recommendations for nomenclature on fibrinogen and fibrin. Medved L, Weisel JW, Fibrinogen and Factor XIII Subcommittee of Scientific Standardization Committee of International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 7 355-359 (2009)
  16. Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes. Wang X, Zhao Q, Christensen BM. BMC Genomics 6 114 (2005)
  17. Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-A resolution. Madrazo J, Brown JH, Litvinovich S, Dominguez R, Yakovlev S, Medved L, Cohen C. Proc. Natl. Acad. Sci. U.S.A. 98 11967-11972 (2001)
  18. Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions. Litvinov RI, Gorkun OV, Galanakis DK, Yakovlev S, Medved L, Shuman H, Weisel JW. Blood 109 130-138 (2007)
  19. Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Hansen TM, Singh H, Tahir TA, Brindle NP. Cell. Signal. 22 527-532 (2010)
  20. Crystal structure of native chicken fibrinogen at 5.5-A resolution. Yang Z, Mochalkin I, Veerapandian L, Riley M, Doolittle RF. Proc. Natl. Acad. Sci. U.S.A. 97 3907-3912 (2000)
  21. Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Barton WA, Tzvetkova D, Nikolov DB. Structure 13 825-832 (2005)
  22. Identification of the binding site for fibrinogen recognition peptide gamma 383-395 within the alpha(M)I-domain of integrin alpha(M)beta2. Yakubenko VP, Solovjov DA, Zhang L, Yee VC, Plow EF, Ugarova TP. J. Biol. Chem. 276 13995-14003 (2001)
  23. Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization. Ware S, Donahue JP, Hawiger J, Anderson WF. Protein Sci. 8 2663-2671 (1999)
  24. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Pei L, Palma M, Nilsson M, Guss B, Flock JI. Infect. Immun. 67 4525-4530 (1999)
  25. Binding of a fibrinogen mimetic stabilizes integrin alphaIIbbeta3's open conformation. Hantgan RR, Rocco M, Nagaswami C, Weisel JW. Protein Sci. 10 1614-1626 (2001)
  26. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment. Burton RA, Tsurupa G, Hantgan RR, Tjandra N, Medved L. Biochemistry 46 8550-8560 (2007)
  27. Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism. Chen Y, Mao H, Zhang X, Gong Y, Zhao N. Int. J. Biol. Macromol. 26 129-134 (1999)
  28. Visualization of fibrinogen αC regions and their arrangement during fibrin network formation by high-resolution AFM. Protopopova AD, Barinov NA, Zavyalova EG, Kopylov AM, Sergienko VI, Klinov DV. J. Thromb. Haemost. 13 570-579 (2015)
  29. Congresses Meeting review: the Second meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP2), Asilomar, California, December 13-16, 1996. Dunbrack RL, Gerloff DL, Bower M, Chen X, Lichtarge O, Cohen FE. Fold Des 2 R27-42 (1997)
  30. The complementary aggregation sites of fibrin investigated through examination of polymers of fibrinogen with fragment E. Veklich Y, Ang EK, Lorand L, Weisel JW. Proc. Natl. Acad. Sci. U.S.A. 95 1438-1442 (1998)
  31. Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism. Guo M, Daines D, Tang J, Shen Q, Perrin RM, Takada Y, Yuan SY, Wu MH. Arterioscler. Thromb. Vasc. Biol. 29 394-400 (2009)
  32. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition. Thomsen T, Moeller JB, Schlosser A, Sorensen GL, Moestrup SK, Palaniyar N, Wallis R, Mollenhauer J, Holmskov U. J. Biol. Chem. 285 1229-1238 (2010)
  33. Benign FGB (148Lys→Asn, and 448Arg→Lys), and novel causative γ211Tyr→His mutation distinguished by time of flight mass spectrometry in a family with hypofibrinogenaemia. Brennan SO, Mangos H, Faed JM. Thromb. Haemost. 111 679-684 (2014)
  34. Crystal structure of a recombinant alphaEC domain from human fibrinogen-420. Spraggon G, Applegate D, Everse SJ, Zhang JZ, Veerapandian L, Redman C, Doolittle RF, Grieninger G. Proc. Natl. Acad. Sci. U.S.A. 95 9099-9104 (1998)
  35. Fibrinogen bellingham: a gamma-chain R275C substitution and a beta-promoter polymorphism in a thrombotic member of an asymptomatic family. Linenberger ML, Kindelan J, Bennett RL, Reiner AP, Côté HC. Am. J. Hematol. 64 242-250 (2000)
  36. Integrin alphaIIbbeta3:ligand interactions are linked to binding-site remodeling. Hantgan RR, Stahle MC, Connor JH, Horita DA, Rocco M, McLane MA, Yakovlev S, Medved L. Protein Sci. 15 1893-1906 (2006)
  37. Reduced platelet adhesion in flowing blood to fibrinogen by alterations in segment gamma316-322, part of the fibrin-specific region. Remijn JA, IJsseldijk MJ, van Hemel BM, Galanakis DK, Hogan KA, Lounes KC, Lord ST, Sixma JJ, de Groot PG. Br. J. Haematol. 117 650-657 (2002)
  38. A structural tree for proteins containing 3beta-corners. Efimov AV. FEBS Lett. 407 37-41 (1997)
  39. Fibrinogen Mannheim II: a novel gamma307 His-->Tyr substitution in the gammaD domain causes hypofibrinogenemia. Dear A, Dempfle CE, Brennan SO, Kirschstein W, George PM. J. Thromb. Haemost. 2 2194-2199 (2004)
  40. Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field. Lin FY, Huang J, Pandey P, Rupakheti C, Li J, Roux BT, MacKerell AD. J Chem Theory Comput 16 3221-3239 (2020)
  41. The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Byrnes JR, Wilson C, Boutelle AM, Brandner CB, Flick MJ, Philippou H, Wolberg AS. Blood 128 1969-1978 (2016)
  42. The location of the carboxy-terminal region of gamma chains in fibrinogen and fibrin D domains. Mosesson MW, Siebenlist KR, Meh DA, Wall JS, Hainfeld JF. Proc. Natl. Acad. Sci. U.S.A. 95 10511-10516 (1998)
  43. Determining the crystal structure of fibrinogen. Doolittle RF. J. Thromb. Haemost. 2 683-689 (2004)
  44. Epiphragmin, the major protein of epiphragm mucus from the vineyard snail, Cernuella virgata. Li D, Graham LD. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 148 192-200 (2007)
  45. Gastrodin interaction with human fibrinogen: anticoagulant effects and binding studies. Liu Y, Tang X, Pei J, Zhang L, Liu F, Li K. Chemistry 12 7807-7815 (2006)
  46. Electrospray ionization mass spectrometry identification of fibrinogen Banks Peninsula (gamma280Tyr-->Cys): a new variant with defective polymerization. Fellowes AP, Brennan SO, Ridgway HJ, Heaton DC, George PM. Br. J. Haematol. 101 24-31 (1998)
  47. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen γ-module. Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D'Antiga L, Perisic VN, Maggiore G, Caccia S, Duga S. J. Thromb. Haemost. 13 1459-1467 (2015)
  48. Hydrodynamic and mass spectrometry analysis of nearly-intact human fibrinogen, chicken fibrinogen, and of a substantially monodisperse human fibrinogen fragment X. Cardinali B, Profumo A, Aprile A, Byron O, Morris G, Harding SE, Stafford WF, Rocco M. Arch. Biochem. Biophys. 493 157-168 (2010)
  49. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM, Midwood KS. Nat Commun 8 1595 (2017)
  50. Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. Ali SK, Sneha P, Priyadharshini Christy J, Zayed H, George Priya Doss C. J. Biomol. Struct. Dyn. 35 2714-2724 (2017)
  51. Two novel fibrinogen variants in the C-terminus of the Bβ-chain: fibrinogen Rokycany and fibrinogen Znojmo. Kotlín R, Reicheltová Z, Suttnar J, Salaj P, Hrachovinová I, Riedel T, Malý M, Oravec M, Kvasnicka J, Dyr JE. J. Thromb. Thrombolysis 30 311-318 (2010)
  52. alphavbeta5 integrin sustains growth of human pre-B cells through an RGD-independent interaction with a basic domain of the CD23 protein. Borland G, Edkins AL, Acharya M, Matheson J, White LJ, Allen JM, Bonnefoy JY, Ozanne BW, Cushley W. J. Biol. Chem. 282 27315-27326 (2007)
  53. In vitro fibrin clot formation and fibrinolysis using heterozygous plasma fibrinogen from gammaAsn319, Asp320 deletion dysfibrinogen, Otsu I. Terasawa F, Kani S, Hongo M, Okumura N. Thromb. Res. 118 651-661 (2006)
  54. Mapping of a minimal apolipoprotein(a) interaction motif conserved in fibrin(ogen) beta - and gamma -chains. Klose R, Fresser F, Kochl S, Parson W, Kapetanopoulos A, Fruchart-Najib J, Baier G, Utermann G. J. Biol. Chem. 275 38206-38212 (2000)
  55. Transglutaminase-catalyzed crosslinking of the Aalpha and gamma constituent chains in fibrinogen. Murthy SN, Wilson JH, Lukas TJ, Veklich Y, Weisel JW, Lorand L. Proc. Natl. Acad. Sci. U.S.A. 97 44-48 (2000)
  56. A method to detect nonproline cis peptide bonds in proteins. Weiss MS, Hilgenfeld R. Biopolymers 50 536-544 (1999)
  57. Trimeric structure and conformational equilibrium of M-ficolin fibrinogen-like domain. Tanio M, Kondo S, Sugio S, Kohno T. J Synchrotron Radiat 15 243-245 (2008)
  58. A T cell-binding fragment of fibrinogen can prevent autoimmunity. Takada Y, Ono Y, Saegusa J, Mitsiades C, Mitsiades N, Tsai J, He Y, Maningding E, Coleman A, Ramirez-Maverakis D, Rodrigues R, Takada Y, Maverakis E. J. Autoimmun. 34 453-459 (2010)
  59. A novel fibrinogen variant--Liberec: dysfibrinogenaemia associated with gamma Tyr262Cys substitution. Kotlín R, Sobotková A, Suttnar J, Salaj P, Walterová L, Riedel T, Reicheltová Z, Dyr JE. Eur. J. Haematol. 81 123-129 (2008)
  60. A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution. Kotlín R, Chytilová M, Suttnar J, Salaj P, Riedel T, Santrůcek J, Klener P, Dyr JE. Eur. J. Haematol. 78 410-416 (2007)
  61. Covalent structure of single-stranded fibrin oligomers cross-linked by FXIIIa. Rosenfeld MA, Leonova VB, Shchegolikhin AN, Bychkova AV, Kostanova EA, Biryukova MI. Biochem. Biophys. Res. Commun. 461 408-412 (2015)
  62. Functional characterization of fibrinogen Bicêtre II: a gamma 308 Asn-->Lys mutation located near the fibrin D:D interaction sites. Marchi RC, Carvajal Z, Boyer-Neumann C, Anglés-Cano E, Weisel JW. Blood Coagul. Fibrinolysis 17 193-201 (2006)
  63. Difference in electrophoretic mobility and plasmic digestion profile between four recombinant fibrinogens, gamma 308K, gamma 308I, gamma 308A, and wild type (gamma 308N). Okumura N, Terasawa F, Fujita K, Tozuka M, Ota H, Katsuyama T. Electrophoresis 21 2309-2315 (2000)
  64. Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Artif Cells Blood Substit Immobil Biotechnol 29 453-464 (2001)
  65. Some notes on crystallizing fibrinogen and fibrin fragments. Doolittle RF. Biophys. Chem. 100 307-313 (2003)
  66. Fibrin self-assembly is adapted to oxidation. Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Kostanova EA, Biryukova MI, Sultimova NB, Konstantinova ML. Free Radic. Biol. Med. 95 55-64 (2016)
  67. Fibrinogen Poissy II (gammaN361K): a novel dysfibrinogenemia associated with defective polymerization and peptide B release. Mathonnet F, Guillon L, Detruit H, Mazmanian GM, Dreyfus M, Alvarez JC, Giudicelli Y, de Mazancourt P. Blood Coagul. Fibrinolysis 14 293-298 (2003)
  68. Hydrolysis-controlled protein adsorption and antifouling behaviors of mixed charged self-assembled monolayer: A molecular simulation study. Liu J, Zhou J. Acta Biomater 40 23-30 (2016)
  69. Coexisting congenital dysfibrinogenemia with a novel mutation in fibrinogen γ chain (γ322 Phe→Ile, Fibrinogen Beijing) and haemophilia B in a family. Hua B, Li K, Lee A, Poon MC, Zhao Y. Haemophilia 21 846-851 (2015)
  70. Competing Bioaerosols May Influence the Seasonality of Influenza-Like Illnesses, including COVID-19. The Chicago Experience. Shah RB, Shah RD, Retzinger DG, Retzinger AC, Retzinger DA, Retzinger GS. Pathogens 10 1204 (2021)
  71. Fibrin protofibril packing and clot stability are enhanced by extended knob-hole interactions and catch-slip bonds. Asquith NL, Duval C, Zhmurov A, Baker SR, McPherson HR, Domingues MM, Connell SDA, Barsegov V, Ariëns RAS. Blood Adv 6 4015-4027 (2022)
  72. Letter Fibrinogen Hangzhou: congenital dysfibrinogenemia caused by the novel missense mutation in FGG (γ308Asn→Thr). Liao Z, Tang H, Xie Y, Duan X, Xu S, Liu C, Cheng Y, Chen Y, Tan Y, Wang D, Luo M. Clin. Chim. Acta 428 106-109 (2014)
  73. Impact of posttranslational modifications on atomistic structure of fibrinogen. Sovová Ž, Štikarová J, Kaufmanová J, Májek P, Suttnar J, Šácha P, Malý M, Dyr JE. PLoS One 15 e0227543 (2020)
  74. Letter Letter to the Editor Regarding "Virtual Screening of Natural and Synthetic Ligands Against Diabetic Retinopathy by Molecular Interaction With Angiopoietin-2". Ng TK. Asia Pac J Ophthalmol (Phila) 3 395-396 (2014)
  75. Self-assembly of soluble unlinked and cross-linked fibrin oligomers. Rosenfeld MA, Leonova VB, Biryukova MI, Vasileva MV. Biochemistry Mosc. 76 1155-1163 (2011)
  76. tRNA-derived fragment tRF-Glu49 inhibits cell proliferation, migration and invasion in cervical cancer by targeting FGL1. Wang Y, Xia W, Shen F, Zhou J, Gu Y, Chen Y. Oncol Lett 24 334 (2022)