1cgf Citations

Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself.

Biochemistry 33 8207-17 (1994)
Cited: 65 times
EuropePMC logo PMID: 8031754

Abstract

Collagenase is a member of the matrix metalloproteinase (MMP) family of enzymes. Aberrant regulation of this family has been implicated in pathologies such as arthritis and metastasis. Two crystal forms of the catalytic (19-kDa) domain of human fibroblast collagenase have been determined using collagenase complexed with a peptide-based inhibitor (CPLX) as a starting model [Lovejoy et al. (1994) Science 263, 375]. The first crystal form (CF1) contains one molecule in the asymmetric unit and has been determined at 1.9-A resolution with an R factor of 19.8%. The second crystal form (CF2) contains two molecules (A and B) in the asymmetric unit and has been determined at 2.1-A resolution with an R factor of 19.7%. The catalytic domain of collagenase is spherical with an active site cleft that contains a ligated catalytic zinc ion. Collagenase shares some structural homology with the bacterial zinc proteinase, thermolysin [Matthews et al. (1972) Nature, New Biol. 238, 37], and the crayfish digestive peptidase, astacin [Bode et al. (1992) Nature 358, 164]. The amino terminus (Leu 102 to Gly 105) of CF1 and CF2 molecules A and B differs from the conformation found in CPLX by bending away from the molecule and interacting with the active site cleft of symmetry-related molecules. In this alternative conformation, both the mainchain nitrogen and carbonyl oxygen of Leu 102 ligate the symmetry-related catalytic zinc. Although there are structural differences in the active site clefts of CF1, CF2, and CPLX, a number of complex-stabilizing interactions are conserved. The structure of collagenase will be useful for developing compounds that selectively inhibit individual members of the closely related matrix metalloproteinase family.

Reviews - 1cgf mentioned but not cited (1)

  1. Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Rangasamy L, Geronimo BD, Ortín I, Coderch C, Zapico JM, Ramos A, de Pascual-Teresa B. Molecules 24 E2982 (2019)

Articles - 1cgf mentioned but not cited (3)

  1. A comparison of the binding sites of matrix metalloproteinases and tumor necrosis factor-alpha converting enzyme: implications for selectivity. Lukacova V, Zhang Y, Kroll DM, Raha S, Comez D, Balaz S. J Med Chem 48 2361-2370 (2005)
  2. Analysis of X-ray structures of matrix metalloproteinases via chaotic map clustering. Giangreco I, Nicolotti O, Carotti A, De Carlo F, Gargano G, Bellotti R. BMC Bioinformatics 11 500 (2010)
  3. Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble. Sung E, Kim S, Shin W. BMC Bioinformatics 11 256 (2010)


Reviews citing this publication (16)

  1. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth FX, McKay DB, Bode W. Protein Sci 4 823-840 (1995)
  2. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Verma RP, Hansch C. Bioorg Med Chem 15 2223-2268 (2007)
  3. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Nagase H, Fields GB. Biopolymers 40 399-416 (1996)
  4. The function of metallothionein. Vallee BL. Neurochem Int 27 23-33 (1995)
  5. Insights into MMP-TIMP interactions. Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, Maskos K. Ann N Y Acad Sci 878 73-91 (1999)
  6. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Stöcker W, Bode W. Curr Opin Struct Biol 5 383-390 (1995)
  7. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Maskos K. Biochimie 87 249-263 (2005)
  8. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Benjamin MM, Khalil RA. Exp Suppl 103 209-279 (2012)
  9. Collagenase: a key enzyme in collagen turnover. Shingleton WD, Hodges DJ, Brick P, Cawston TE. Biochem Cell Biol 74 759-775 (1996)
  10. Protease inhibitors: role and potential therapeutic use in human cancer. DeClerck YA, Imren S. Eur J Cancer 30A 2170-2180 (1994)
  11. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Liu J, Khalil RA. Prog Mol Biol Transl Sci 148 355-420 (2017)
  12. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Maskos K, Bode W. Mol Biotechnol 25 241-266 (2003)
  13. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Kucukguven A, Khalil RA. Curr Drug Targets 14 287-324 (2013)
  14. Matrix metalloproteases: variations on a theme. Borkakoti N. Prog Biophys Mol Biol 70 73-94 (1998)
  15. Update on computer-aided drug design. Jackson RC. Curr Opin Biotechnol 6 646-651 (1995)
  16. A novel strategy for designing specific gelatinase A inhibitors: potential use to control tumor progression. Augé F, Hornebeck W, Laronze JY. Crit Rev Oncol Hematol 49 277-282 (2004)

Articles citing this publication (45)

  1. Analysis of zinc binding sites in protein crystal structures. Alberts IL, Nadassy K, Wodak SJ. Protein Sci 7 1700-1716 (1998)
  2. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Li J, Brick P, O'Hare MC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Bigg HF, Hazleman BL, Cawston TE. Structure 3 541-549 (1995)
  3. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD. Protein Sci 4 1966-1976 (1995)
  4. Specificity of inhibition of matrix metalloproteinase activity by doxycycline: relationship to structure of the enzyme. Smith GN, Mickler EA, Hasty KA, Brandt KD. Arthritis Rheum 42 1140-1146 (1999)
  5. Zinc-dependent dimers observed in crystals of human endostatin. Ding YH, Javaherian K, Lo KM, Chopra R, Boehm T, Lanciotti J, Harris BA, Li Y, Shapiro R, Hohenester E, Timpl R, Folkman J, Wiley DC. Proc Natl Acad Sci U S A 95 10443-10448 (1998)
  6. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. Watanabe L, Shannon JD, Valente RH, Rucavado A, Alape-Girón A, Kamiguti AS, Theakston RD, Fox JW, Gutiérrez JM, Arni RK. Protein Sci 12 2273-2281 (2003)
  7. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Delorme VG, McCabe PF, Kim DJ, Leaver CJ. Plant Physiol 123 917-927 (2000)
  8. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. Gong W, Zhu X, Liu S, Teng M, Niu L. J Mol Biol 283 657-668 (1998)
  9. Computational sequence analysis of matrix metalloproteinases. Sang QA, Douglas DA. J Protein Chem 15 137-160 (1996)
  10. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Dhanaraj V, Ye QZ, Johnson LL, Hupe DJ, Ortwine DF, Dunbar JB, Rubin JR, Pavlovsky A, Humblet C, Blundell TL. Structure 4 375-386 (1996)
  11. Crystal structure of an active form of human MMP-1. Iyer S, Visse R, Nagase H, Acharya KR. J Mol Biol 362 78-88 (2006)
  12. Snapshots of the reaction mechanism of matrix metalloproteinases. Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ. Angew Chem Int Ed Engl 45 7952-7955 (2006)
  13. X-ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: implications for inhibitor selectivity. Pavlovsky AG, Williams MG, Ye QZ, Ortwine DF, Purchase CF, White AD, Dhanaraj V, Roth BD, Johnson LL, Hupe D, Humblet C, Blundell TL. Protein Sci 8 1455-1462 (1999)
  14. 1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Betz M, Huxley P, Davies SJ, Mushtaq Y, Pieper M, Tschesche H, Bode W, Gomis-Rüth FX. Eur J Biochem 247 356-363 (1997)
  15. Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. Augé F, Hornebeck W, Decarme M, Laronze JY. Bioorg Med Chem Lett 13 1783-1786 (2003)
  16. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes. Chen L, Rydel TJ, Gu F, Dunaway CM, Pikul S, Dunham KM, Barnett BL. J Mol Biol 293 545-557 (1999)
  17. Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity. Finzel BC, Baldwin ET, Bryant GL, Hess GF, Wilks JW, Trepod CM, Mott JE, Marshall VP, Petzold GL, Poorman RA, O'Sullivan TJ, Schostarez HJ, Mitchell MA. Protein Sci 7 2118-2126 (1998)
  18. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor. Moy FJ, Chanda PK, Chen JM, Cosmi S, Edris W, Levin JI, Powers R. J Mol Biol 302 671-689 (2000)
  19. Efficient conformational sampling of local side-chain flexibility. Källblad P, Dean PM. J Mol Biol 326 1651-1665 (2003)
  20. NMR structure of the Streptomyces metalloproteinase inhibitor, SMPI, isolated from Streptomyces nigrescens TK-23: another example of an ancestral beta gamma-crystallin precursor structure. Ohno A, Tate S, Seeram SS, Hiraga K, Swindells MB, Oda K, Kainosho M. J Mol Biol 282 421-433 (1998)
  21. Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Van Doren SR, Kurochkin AV, Hu W, Ye QZ, Johnson LL, Hupe DJ, Zuiderweg ER. Protein Sci 4 2487-2498 (1995)
  22. Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. Grasso G, D'Agata R, Rizzarelli E, Spoto G, D'Andrea L, Pedone C, Picardi A, Romanelli A, Fragai M, Yeo KJ. J Mass Spectrom 40 1565-1571 (2005)
  23. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes. Terp GE, Christensen IT, Jørgensen FS. J Biomol Struct Dyn 17 933-946 (2000)
  24. Assignments, secondary structure and dynamics of the inhibitor-free catalytic fragment of human fibroblast collagenase. Moy FJ, Pisano MR, Chanda PK, Urbano C, Killar LM, Sung ML, Powers R. J Biomol NMR 10 9-19 (1997)
  25. Introduction of the 4-(4-bromophenyl)benzenesulfonyl group to hydrazide analogs of Ilomastat leads to potent gelatinase B (MMP-9) inhibitors with improved selectivity. Ledour G, Moroy G, Rouffet M, Bourguet E, Guillaume D, Decarme M, Elmourabit H, Augé F, Alix AJ, Laronze JY, Bellon G, Hornebeck W, Sapi J. Bioorg Med Chem 16 8745-8759 (2008)
  26. Structural and functional characterization of a P-III metalloproteinase, leucurolysin-B, from Bothrops leucurus venom. Sanchez EF, Gabriel LM, Gontijo S, Gremski LH, Veiga SS, Evangelista KS, Eble JA, Richardson M. Arch Biochem Biophys 468 193-204 (2007)
  27. Bioactive conformation of a potent stromelysin inhibitor determined by X-nucleus filtered and multidimensional NMR spectroscopy. Gonnella NC, Li YC, Zhang X, Paris CG. Bioorg Med Chem 5 2193-2201 (1997)
  28. Expression, characterization and structure determination of an active site mutant (Glu202-Gln) of mini-stromelysin-1. Steele DL, El-Kabbani O, Dunten P, Windsor LJ, Kammlott RU, Crowther RL, Michoud C, Engler JA, Birktoft JJ. Protein Eng 13 397-405 (2000)
  29. Matrix metalloproteinase-inhibitor interaction: the solution structure of the catalytic domain of human matrix metalloproteinase-3 with different inhibitors. Alcaraz LA, Banci L, Bertini I, Cantini F, Donaire A, Gonnelli L. J Biol Inorg Chem 12 1197-1206 (2007)
  30. Characterization of folded, intermediate, and unfolded states of recombinant human interstitial collagenase. Zhang Y, Gray RD. J Biol Chem 271 8015-8021 (1996)
  31. Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment. Bhaskaran R, Palmier MO, Bagegni NA, Liang X, Van Doren SR. J Mol Biol 374 1333-1344 (2007)
  32. The interaction of metal ions and Marimastat with matrix metalloproteinase 9. Underwood CK, Min D, Lyons JG, Hambley TW. J Inorg Biochem 95 165-170 (2003)
  33. The expression, refolding, and purification of the catalytic domain of human collagenase-3 (MMP-13). Pathak N, Hu SI, Koehn JA. Protein Expr Purif 14 283-288 (1998)
  34. An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human. Chakrabarti B, Bairagya HR, Mallik P, Mukhopadhyay BP, Bera A. J Biomol Struct Dyn 28 503-516 (2011)
  35. Characterisation of the MMP-12-elastin adduct. Bertini I, Fragai M, Luchinat C, Melikian M, Venturi C. Chemistry 15 7842-7845 (2009)
  36. Binding affinity of hydroxamate inhibitors of matrix metalloproteinase-2. Zhang W, Hou TJ, Qiao XB, Huai S, Xu XJ. J Mol Model 10 112-120 (2004)
  37. Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif. Camacho E, Sanz L, Escalante T, Pérez A, Villalta F, Lomonte B, Neves-Ferreira AG, Feoli A, Calvete JJ, Gutiérrez JM, Rucavado A. Toxins (Basel) 8 E292 (2016)
  38. Molecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors. Farrokhnia M, Mahnam K. Iran J Pharm Res 16 173-186 (2017)
  39. Free energy calculations on snake venom metalloproteinase BaP1. Lingott T, Merfort I, Steinbrecher T. Chem Biol Drug Des 79 990-1000 (2012)
  40. Role of the conserved histidine and aspartic acid residues in activity and stabilization of human gelatinase B: an example of matrix metalloproteinases. Pourmotabbed T, Aelion JA, Tyrrell D, Hasty KA, Bu CH, Mainardi CL. J Protein Chem 14 527-535 (1995)
  41. New biochemical insight of conserved water molecules at catalytic and structural Zn2+ ions in human matrix metalloproteinase-I: a study by MD-simulation. Chakrabarti B, Bairagya HR, Mukhopadhyay BP, Sekar K. J Mol Model 23 57 (2017)
  42. Novel matrix metallo-proteinase (MMP-2) phosphonoboronate inhibitors. Pergament I, Reich R, Srebnik M. Bioorg Med Chem Lett 12 1215-1218 (2002)
  43. Assignments and structure determination of the catalytic domain of human fibroblast collagenase using 3D double and triple resonance NMR spectroscopy. McCoy MA, Dellwo MJ, Schneider DM, Banks TM, Falvo J, Vavra KJ, Mathiowetz AM, Qoronfleh MW, Ciccarelli R, Cook ER, Pulvino TA, Wahl RC, Wang H. J Biomol NMR 9 11-24 (1997)
  44. Computational analysis of the metal selectivity of matrix metalloproteinase 8. Long Z. PLoS One 15 e0243321 (2020)
  45. Coordination of divalent metal cation to amide group to form adduct ion in FAB mass spectrometry: implication of Zn2+ in enzymatic hydrolysis of amide bond. Kobayashi H, Morisaki N, Miyachi H, Hashimoto Y. Chem Pharm Bull (Tokyo) 56 672-676 (2008)


Related citations provided by authors (1)

  1. Structure of the Catalytic Domain of Fibroblast Collagenase Complexed with an Inhibitor. Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, Mcgeehan G, Mcelroy AB, Drewry D, Lambert MH, Jordan SR Science 263 375- (1994)