1abr Citations

Crystal structure of abrin-a at 2.14 A.

J Mol Biol 250 354-67 (1995)
Cited: 101 times
EuropePMC logo PMID: 7608980

Abstract

The crystal structure of abrin-a, a type II ribosome-inactivating protein from the seeds of Abrus precatorius, has been determined from a novel crystalline form by the molecular replacement method using the coordinates of ricin. The structure has been refined at 2.14 A to a R-factor of 18.9%. The root-mean-square deviations of bond lengths and angles from the standard values are 0.013 A and 1.82 degrees, respectively. The overall protein folding is similar to that of ricin, but there are differences in the secondary structure, mostly of the A-chain. Several parts of the molecular surface differ significantly; some of them are quite near the active site cleft, and probably influence ribosome recognition. The positions of invariant active site residues remain the same, except the position of Tyr74. Two water molecules of hydrogen-bonded active site residues have been located in the active site cleft. Both of them may be responsible for hydrolyzing the N-C glycosidic bond. The current abrin-a structure is lactose free; this is probably essential for abrin-a crystallization. The B-chain is a glycoprotein, and the positions of several sugar residues of two sugar chains linked to earlier predicted glycosylation sites were determined. One of the sugar chains is a bridge between two neighboring molecules, since one of its mannose residues is connected to the galactose binding site of the neighboring molecule. Another sugar chain covers the surface of the B-chain.

Reviews - 1abr mentioned but not cited (2)

  1. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Biochem J 382 769-781 (2004)
  2. Biological Toxins as the Potential Tools for Bioterrorism. Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Int J Mol Sci 20 (2019)

Articles - 1abr mentioned but not cited (22)

  1. A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Xie L, Xie L, Bourne PE. Bioinformatics 25 i305-12 (2009)
  2. Predicting the accuracy of protein-ligand docking on homology models. Bordogna A, Pandini A, Bonati L. J Comput Chem 32 81-98 (2011)
  3. Quantitative prediction of protein-protein binding affinity with a potential of mean force considering volume correction. Su Y, Zhou A, Xia X, Li W, Sun Z. Protein Sci 18 2550-2558 (2009)
  4. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  5. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  6. Variation in structural location and amino acid conservation of functional sites in protein domain families. Pils B, Copley RR, Schultz J. BMC Bioinformatics 6 210 (2005)
  7. Recognizing protein-protein interfaces with empirical potentials and reduced amino acid alphabets. Launay G, Mendez R, Wodak S, Simonson T. BMC Bioinformatics 8 270 (2007)
  8. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions. Malhotra S, Sankar K, Sowdhamini R. PLoS One 9 e80255 (2014)
  9. Predicting Protein-Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Kuo TH, Li KB. Int J Mol Sci 17 E1788 (2016)
  10. Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10. Bagaria S, Ponnalagu D, Bisht S, Karande AA. PLoS ONE 8 e70273 (2013)
  11. Crystallization and preliminary characterization of a highly thermostable lectin from Trichosanthes dioica and comparison with other Trichosanthes lectins. Dharkar PD, Anuradha P, Gaikwad SM, Suresh CG. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 205-209 (2006)
  12. A monoclonal antibody to an abrin chimera recognizing a unique epitope on abrin A chain confers protection from abrin-induced lethality. Kumar MS, Karande AA. Hum Vaccin Immunother 12 124-131 (2016)
  13. Cloning, expression, purification, crystallization and preliminary X-ray studies of a secreted lectin (Rv1419) from Mycobacterium tuberculosis. Patra D, Srikalaivani R, Misra A, Singh DD, Selvaraj M, Vijayan M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 1662-1665 (2010)
  14. A model for protein sequence evolution based on selective pressure for protein stability: application to hemoglobins. Marsh L. Evol Bioinform Online 5 107-118 (2009)
  15. Equal Neutralization Potency of Antibodies Raised against Abrin Subunits. Gal Y, Sapoznikov A, Falach R, Mazor O, Alcalay R, Elhanany E, Aftalion M, Ehrlich S, Kronman C, Sabo T. Antibodies (Basel) 9 E4 (2020)
  16. Novel Phage Display-Derived Anti-Abrin Antibodies Confer Post-Exposure Protection against Abrin Intoxication. Mechaly A, Alcalay R, Noy-Porat T, Epstein E, Gal Y, Mazor O. Toxins (Basel) 10 (2018)
  17. A New Method for Abrin Detection Based on the Interaction between Target Molecules and Fluorescently Labeled Aptamers on Magnetic Microspheres. Liu Z, Tong Z, Wu Y, Liu B, Feng S, Mu X, Wang J, Du B, Xu J, Liu S. Materials (Basel) 15 6977 (2022)
  18. A Novel Humanized Anti-Abrin A Chain Antibody Inhibits Abrin Toxicity In Vitro and In Vivo. Peng J, Wu J, Shi N, Xu H, Luo L, Wang J, Li X, Xiao H, Feng J, Li X, Chai L, Qiao C. Front Immunol 13 831536 (2022)
  19. Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS, Akamatsu MA, Ho PL. Front Microbiol 13 1051698 (2022)
  20. Mapping Immunodominant Antibody Epitopes of Abrin. Alcalay R, Falach R, Gal Y, Sapoznikov A, Sabo T, Kronman C, Mazor O. Antibodies (Basel) 9 (2020)
  21. Structural re-alignment in an immunogenic surface region of ricin A chain. Zemla AT, Ecale Zhou CL. Bioinform Biol Insights 2 5-13 (2008)
  22. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Sarkes DA, Hurley MM, Stratis-Cullum DN. Molecules 21 (2016)


Reviews citing this publication (10)

  1. The history of ricin, abrin and related toxins. Olsnes S. Toxicon 44 361-370 (2004)
  2. The structural role of sugars in glycoproteins. Wyss DF, Wagner G. Curr. Opin. Biotechnol. 7 409-416 (1996)
  3. Ricin. Olsnes S, Kozlov JV. Toxicon 39 1723-1728 (2001)
  4. The relevance of higher plants in lead compound discovery programs. Kinghorn AD, Pan L, Fletcher JN, Chai H. J. Nat. Prod. 74 1539-1555 (2011)
  5. Ribosome-inactivating and related proteins. Schrot J, Weng A, Melzig MF. Toxins (Basel) 7 1556-1615 (2015)
  6. New folds of plant lectins. Wright CS. Curr. Opin. Struct. Biol. 7 631-636 (1997)
  7. Structure and function of carbohydrate-binding module families 13 and 42 of glycoside hydrolases, comprising a β-trefoil fold. Fujimoto Z. Biosci. Biotechnol. Biochem. 77 1363-1371 (2013)
  8. Botulinum neurotoxins: new questions arising from structural biology. Kammerer RA, Benoit RM. Trends Biochem. Sci. 39 517-526 (2014)
  9. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Akkouh O, Ng TB, Cheung RC, Wong JH, Pan W, Ng CC, Sha O, Shaw PC, Chan WY. Appl. Microbiol. Biotechnol. 99 9847-9863 (2015)
  10. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. De Zaeytijd J, Van Damme EJ. Toxins (Basel) 9 (2017)

Articles citing this publication (67)

  1. The (QxW)3 domain: a flexible lectin scaffold. Hazes B. Protein Sci. 5 1490-1501 (1996)
  2. Statistical analysis and prediction of protein-protein interfaces. Bordner AJ, Abagyan R. Proteins 60 353-366 (2005)
  3. Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Jones S, Marin A, Thornton JM. Protein Eng. 13 77-82 (2000)
  4. Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, Mizuno H. J. Mol. Biol. 300 575-585 (2000)
  5. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. Fujimoto Z, Kuno A, Kaneko S, Kobayashi H, Kusakabe I, Mizuno H. J. Mol. Biol. 316 65-78 (2002)
  6. Ribosome-inactivating protein and apoptosis: abrin causes cell death via mitochondrial pathway in Jurkat cells. Narayanan S, Surolia A, Karande AA. Biochem. J. 377 233-240 (2004)
  7. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Pohleven J, Obermajer N, Sabotic J, Anzlovar S, Sepcić K, Kos J, Kralj B, Strukelj B, Brzin J. Biochim. Biophys. Acta 1790 173-181 (2009)
  8. Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a beta-trefoil. Brych SR, Blaber SI, Logan TM, Blaber M. Protein Sci. 10 2587-2599 (2001)
  9. Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. Grahn E, Askarieh G, Holmner A, Tateno H, Winter HC, Goldstein IJ, Krengel U. J. Mol. Biol. 369 710-721 (2007)
  10. Prediction of a conserved, neutralizing epitope in ribosome-inactivating proteins. Lebeda FJ, Olson MA. Int. J. Biol. Macromol. 24 19-26 (1999)
  11. Structure, evolutionary conservation, and conformational dynamics of Homo sapiens fascin-1, an F-actin crosslinking protein. Sedeh RS, Fedorov AA, Fedorov EV, Ono S, Matsumura F, Almo SC, Bathe M. J. Mol. Biol. 400 589-604 (2010)
  12. Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity. Shi X, Brauburger K, Elliott RM. J. Virol. 79 13725-13734 (2005)
  13. Bivalent carbohydrate binding is required for biological activity of Clitocybe nebularis lectin (CNL), the N,N'-diacetyllactosediamine (GalNAcβ1-4GlcNAc, LacdiNAc)-specific lectin from basidiomycete C. nebularis. Pohleven J, Renko M, Magister Š, Smith DF, Künzler M, Štrukelj B, Turk D, Kos J, Sabotič J. J. Biol. Chem. 287 10602-10612 (2012)
  14. Crystal structure of mistletoe lectin I from Viscum album. Krauspenhaar R, Eschenburg S, Perbandt M, Kornilov V, Konareva N, Mikailova I, Stoeva S, Wacker R, Maier T, Singh T, Mikhailov A, Voelter W, Betzel C. Biochem. Biophys. Res. Commun. 257 418-424 (1999)
  15. Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. Leonidas DD, Swamy BM, Hatzopoulos GN, Gonchigar SJ, Chachadi VB, Inamdar SR, Zographos SE, Oikonomakos NG. J. Mol. Biol. 368 1145-1161 (2007)
  16. Crystal structure at 3 A of mistletoe lectin I, a dimeric type-II ribosome-inactivating protein, complexed with galactose. Niwa H, Tonevitsky AG, Agapov II, Saward S, Pfüller U, Palmer RA. Eur. J. Biochem. 270 2739-2749 (2003)
  17. Toxicity and detection of ricin and abrin in beverages. Garber EA. J. Food Prot. 71 1875-1883 (2008)
  18. Mistletoe lectin I forms a double trefoil structure. Sweeney EC, Tonevitsky AG, Palmer RA, Niwa H, Pfueller U, Eck J, Lentzen H, Agapov II, Kirpichnikov MP. FEBS Lett. 431 367-370 (1998)
  19. A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo. Surendranath K, Karande AA. Clin. Vaccine Immunol. 15 737-743 (2008)
  20. Structure and mode of action of a mosquitocidal holotoxin. Treiber N, Reinert DJ, Carpusca I, Aktories K, Schulz GE. J. Mol. Biol. 381 150-159 (2008)
  21. An atomic resolution structure for human fibroblast growth factor 1. Bernett MJ, Somasundaram T, Blaber M. Proteins 57 626-634 (2004)
  22. High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile β-trefoil lectin domain from the mushroom Laetiporus sulphureus. Angulo I, Acebrón I, de las Rivas B, Muñoz R, Rodríguez-Crespo I, Menéndez M, García P, Tateno H, Goldstein IJ, Pérez-Agote B, Mancheño JM. Glycobiology 21 1349-1361 (2011)
  23. Selection and characterization of human monoclonal antibodies against Abrin by phage display. Zhou H, Zhou B, Ma H, Carney C, Janda KD. Bioorg. Med. Chem. Lett. 17 5690-5692 (2007)
  24. Accommodation of a highly symmetric core within a symmetric protein superfold. Brych SR, Kim J, Logan TM, Blaber M. Protein Sci. 12 2704-2718 (2003)
  25. Purification and characterization of four isoforms of Himalayan mistletoe ribosome-inactivating protein from Viscum album having unique sugar affinity. Mishra V, Sharma RS, Yadav S, Babu CR, Singh TP. Arch. Biochem. Biophys. 423 288-301 (2004)
  26. Purification, characterization and molecular cloning of trichoanguin, a novel type I ribosome-inactivating protein from the seeds of Trichosanthes anguina. Chow LP, Chou MH, Ho CY, Chuang CC, Pan FM, Wu SH, Lin JY. Biochem. J. 338 ( Pt 1) 211-219 (1999)
  27. Refined crystal structure (2.3 A) of a double-headed winged bean alpha-chymotrypsin inhibitor and location of its second reactive site. Dattagupta JK, Podder A, Chakrabarti C, Sen U, Mukhopadhyay D, Dutta SK, Singh M. Proteins 35 321-331 (1999)
  28. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. Garber EA, Walker JL, O'Brien TW. J. Food Prot. 71 1868-1874 (2008)
  29. Novel sugar-binding specificity of the type XIII xylan-binding domain of a family F/10 xylanase from Streptomyces olivaceoviridis E-86. Kuno A, Kaneko S, Ohtsuki H, Ito S, Fujimoto Z, Mizuno H, Hasegawa T, Taira K, Kusakabe I, Hayashi K. FEBS Lett. 482 231-236 (2000)
  30. Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra. Maveyraud L, Niwa H, Guillet V, Svergun DI, Konarev PV, Palmer RA, Peumans WJ, Rougé P, Van Damme EJ, Reynolds CD, Mourey L. Proteins 75 89-103 (2009)
  31. Identifying protein-protein interaction sites in transient complexes with temperature factor, sequence profile and accessible surface area. Liu R, Jiang W, Zhou Y. Amino Acids 38 263-270 (2010)
  32. Abrus pulchellus type-2 RIP, pulchellin: heterologous expression and refolding of the sugar-binding B chain. Goto LS, Beltramini LM, de Moraes DI, Moreira RA, de Araújo AP. Protein Expr. Purif. 31 12-18 (2003)
  33. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. Hou X, Meehan EJ, Xie J, Huang M, Chen M, Chen L. J. Struct. Biol. 164 81-87 (2008)
  34. Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding. Krupakar J, Swaminathan CP, Das PK, Surolia A, Podder SK. Biochem. J. 338 ( Pt 2) 273-279 (1999)
  35. Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. Van Damme EJ, Barre A, Barbieri L, Valbonesi P, Rouge P, Van Leuven F, Stirpe F, Peumans WJ. Biochem. J. 324 ( Pt 3) 963-970 (1997)
  36. A biophysical elucidation for less toxicity of agglutinin than abrin-a from the seeds of Abrus precatorius in consequence of crystal structure. Cheng J, Lu TH, Liu CL, Lin JY. J. Biomed. Sci. 17 34 (2010)
  37. Both N- and C-terminal regions are essential for cinnamomin A-chain to deadenylate ribosomal RNA and supercoiled double-stranded DNA. He WJ, Liu WY. Biochem. J. 377 17-23 (2004)
  38. Pulchellin, a highly toxic type 2 ribosome-inactivating protein from Abrus pulchellus. Cloning heterologous expression of A-chain and structural studies. Silva AL, Goto LS, Dinarte AR, Hansen D, Moreira RA, Beltramini LM, Araújo AP. FEBS J. 272 1201-1210 (2005)
  39. The 1.4 anstroms structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome inactivating proteins. Fermani S, Falini G, Ripamonti A, Polito L, Stirpe F, Bolognesi A. J. Struct. Biol. 149 204-212 (2005)
  40. Structural and functional studies of cinnamomin, a new type II ribosome-inactivating protein isolated from the seeds of the camphor tree. Xie L, Wang BZ, Hu RG, Ji HB, Zhang L, Liu WY. Eur. J. Biochem. 268 5723-5733 (2001)
  41. NMR studies on the interaction of sugars with the C-terminal domain of an R-type lectin from the earthworm Lumbricus terrestris. Hemmi H, Kuno A, Ito S, Suzuki R, Hasegawa T, Hirabayashi J. FEBS J. 276 2095-2105 (2009)
  42. The sequence and structure of snake gourd (Trichosanthes anguina) seed lectin, a three-chain nontoxic homologue of type II RIPs. Sharma A, Pohlentz G, Bobbili KB, Jeyaprakash AA, Chandran T, Mormann M, Swamy MJ, Vijayan M. Acta Crystallogr. D Biol. Crystallogr. 69 1493-1503 (2013)
  43. X-ray sequence and crystal structure of luffaculin 1, a novel type 1 ribosome-inactivating protein. Hou X, Chen M, Chen L, Meehan EJ, Xie J, Huang M. BMC Struct. Biol. 7 29 (2007)
  44. Analysis of active site residues of the antiviral protein from summer leaves from Phytolacca americana by site-directed mutagenesis. Poyet JL, Hoeveler A, Jongeneel CV. Biochem. Biophys. Res. Commun. 253 582-587 (1998)
  45. Inhibition of protein synthesis leading to unfolded protein response is the major event in abrin-mediated apoptosis. Mishra R, Kumar MS, Karande AA. Mol. Cell. Biochem. 403 255-265 (2015)
  46. Inhibitory effect of Abrus abrin-derived peptide fraction against Dalton's lymphoma ascites model. Bhutia SK, Mallick SK, Maiti S, Maiti TK. Phytomedicine 16 377-385 (2009)
  47. Isolation and characterization of four type 2 ribosome inactivating pulchellin isoforms from Abrus pulchellus seeds. Castilho PV, Goto LS, Roberts LM, Araújo AP. FEBS J. 275 948-959 (2008)
  48. Structures of the ribosome-inactivating protein from barley seeds reveal a unique activation mechanism. Lee BG, Kim MK, Kim BW, Suh SW, Song HK. Acta Crystallogr. D Biol. Crystallogr. 68 1488-1500 (2012)
  49. Letter (1)H, (13)C, and (15)N chemical shift assignment of the C-terminal 15 kDa domain of a novel galactose-binding protein from the earthworm Lumbricus terrestris. Hemmi H, Kuno A, Ito S, Suzuki R, Kaneko S, Hasegawa T, Hirabayashi J, Kasai K. J. Biomol. NMR 30 377-378 (2004)
  50. Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). Iglesias R, Citores L, Di Maro A, Ferreras JM. Planta 241 421-433 (2015)
  51. Restoration of lectin activity to an inactive abrin B chain by substitution and mutation of the 2 gamma subdomain. de Sousa M, Roberts LM, Lord JM. Eur. J. Biochem. 260 355-361 (1999)
  52. The mistletoe lectin I--phloretamide structure reveals a new function of plant lectins. Meyer A, Rypniewski W, Celewicz L, Erdmann VA, Voelter W, Singh TP, Genov N, Barciszewski J, Betzel Ch. Biochem. Biophys. Res. Commun. 364 195-200 (2007)
  53. Cloning and characterization of the genes encoding toxic lectins in mistletoe (Viscum album L). Kourmanova AG, Soudarkina OJ, Olsnes S, Kozlov JV. Eur. J. Biochem. 271 2350-2360 (2004)
  54. Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies. He X, Patfield S, Cheng LW, Stanker LH, Rasooly R, McKeon TA, Zhang Y, Brandon DL. Toxins (Basel) 9 (2017)
  55. Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. Chandran T, Sharma A, Vijayan M. J. Biosci. 40 929-941 (2015)
  56. [Paraoxonase 1 gene polymorphism 192Q/R in old men and long-livers from Tatars ethnic group]. Pauk VV, Tuktarova IA, Nasibullin TR, Zueva LP, Adel'guzhina AKh, Khusnutdinova EK, Mustafina OE. Mol. Biol. (Mosk.) 41 601-607 (2007)
  57. Cinnamomin: separation, crystallization and preliminary X-ray diffraction study. Wang T, Zou YS, Zhu DW, Azzi A, Liu WY, Lin SX. Amino Acids 34 239-243 (2008)
  58. Probing the domain structure of abrin-a by tryptic digestion. Lin SH, Chow LP, Chen YL, Liaw YC, Chen JK, Lin JY. Eur. J. Biochem. 240 564-569 (1996)
  59. Structural analysis of toxic volkensin, a type 2 ribosome inactivating protein from Adenia volkensii Harm (kilyambiti plant): molecular modeling and surface analysis by computational methods and limited proteolysis. Severino V, Paiardini A, Pascarella S, Parente A, Chambery A. Int. J. Biol. Macromol. 45 407-413 (2009)
  60. Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. Bansia H, Bagaria S, Karande AA, Ramakumar S. FEBS J 286 1003-1029 (2019)
  61. Binding and structural studies of the complexes of type 1 ribosome inactivating protein from Momordica balsamina with uracil and uridine. Pandey SN, Iqbal N, Singh PK, Rastogi N, Kaur P, Sharma S, Singh TP. Proteins 87 99-109 (2019)
  62. Detection of Abrin-Like and Prepropulchellin-Like Toxin Genes and Transcripts Using Whole Genome Sequencing and Full-Length Transcript Sequencing of Abrus precatorius. Hovde BT, Daligault HE, Hanschen ER, Kunde YA, Johnson MB, Starkenburg SR, Johnson SL. Toxins (Basel) 11 (2019)
  63. Ligand binding and retention in snake gourd seed lectin (SGSL). A crystallographic, thermodynamic and molecular dynamics study. Chandran T, Sivaji N, Surolia A, Vijayan M. Glycobiology 28 968-977 (2018)
  64. Molecular modeling of the interactions of trichosanthin with four substrate analogs. Gu Y, Chen W, Xia Z. J Protein Chem 19 291-297 (2000)
  65. Performance of Classification Models of Toxins Based on Raman Spectroscopy Using Machine Learning Algorithms. Zhang P, Liu B, Mu X, Xu J, Du B, Wang J, Liu Z, Tong Z. Molecules 29 197 (2023)
  66. Primary Sequence and 3D Structure Prediction of the Plant Toxin Stenodactylin. Iglesias R, Polito L, Bortolotti M, Pedrazzi M, Citores L, Ferreras JM, Bolognesi A. Toxins (Basel) 12 (2020)
  67. Sequestration of the abrin A chain to the nucleus by BASP1 increases the resistance of cells to abrin toxicity. Gadadhar S, Bora N, Tiwari V, Karande AA. Biochem. J. 458 375-385 (2014)


Related citations provided by authors (3)

  1. A New Crystal Form of Abrin-A from the Seeds of Abrus Precatorius. Tahirov TH, Lu T-H, Liaw Y-C, Chu S-C, Lin J-Y J. Mol. Biol. 235 1152- (1994)
  2. Primary Structure of Three Distinct Isobrins Determined by Cdna Sequencing: Conservation and Significance. Hung C-H, Lee M-C, Lee T-C, Lin J-Y J. Mol. Biol. 229 263- (1993)
  3. The Complete Amino Acid Sequence of the A-Chain of Abrin-1, a Toxic Protein from the Seeds of Abrus Precatorius. Fanatsu G, Taguchi Y, Kamenosono M, Yanaka M J. Biol. Chem. 52 1095- (1988)