2hgh Citations

Induced fit and "lock and key" recognition of 5S RNA by zinc fingers of transcription factor IIIA.

Abstract

Transcription factor IIIA (TFIIIA) is a Cys2His2 zinc finger protein that regulates expression of the 5 S ribosomal RNA gene by binding specifically to the internal control element. TFIIIA also functions in transport and storage of 5 S RNA by binding directly to the RNA transcript. To obtain insights into the mechanism by which TFIIIA recognizes 5 S RNA, we determined the solution structure of the middle three zinc fingers bound to the central core of 5 S RNA. Finger 4 utilizes "lock and key" recognition to bind in the widened major groove of the pre-structured RNA loop E motif. This interaction is mediated by direct hydrogen bonding interactions with bases. In contrast, recognition of loop A, a flexible junction of three helices, occurs by an induced fit mechanism that involves reorganization of the conserved CAUA motif and structuring of the finger 5-finger 6 interface to form a complementary RNA binding surface.

Reviews - 2hgh mentioned but not cited (1)

  1. Conservation of the three-dimensional structure in non-homologous or unrelated proteins. Sousounis K, Haney CE, Cao J, Sunchu B, Tsonis PA. Hum Genomics 6 10 (2012)

Articles - 2hgh mentioned but not cited (11)

  1. Web 3DNA--a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Zheng G, Lu XJ, Olson WK. Nucleic Acids Res 37 W240-6 (2009)
  2. Origins of coevolution between residues distant in protein 3D structures. Anishchenko I, Ovchinnikov S, Kamisetty H, Baker D. Proc Natl Acad Sci U S A 114 9122-9127 (2017)
  3. A nonredundant structure dataset for benchmarking protein-RNA computational docking. Huang SY, Zou X. J Comput Chem 34 311-318 (2013)
  4. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly. Jain S, Schlick T. J Mol Biol 429 3587-3605 (2017)
  5. A pipeline for computational design of novel RNA-like topologies. Jain S, Laederach A, Ramos SBV, Schlick T. Nucleic Acids Res 46 7040-7051 (2018)
  6. From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces. Shazman S, Elber G, Mandel-Gutfreund Y. Nucleic Acids Res 39 7390-7399 (2011)
  7. Patterns of coevolving amino acids unveil structural and dynamical domains. Granata D, Ponzoni L, Micheletti C, Carnevale V. Proc Natl Acad Sci U S A 114 E10612-E10621 (2017)
  8. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Bayrak CS, Kim N, Schlick T. Nucleic Acids Res 45 5414-5422 (2017)
  9. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries. Pröpper K, Meindl K, Sammito M, Dittrich B, Sheldrick GM, Pohl E, Usón I. Acta Crystallogr D Biol Crystallogr 70 1743-1757 (2014)
  10. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling. Li J, Chen SJ. Nucleic Acids Res 51 3341-3356 (2023)
  11. Dual-wield NTPases: A novel protein family mined from AlphaFold DB. Sakuma K, Koike R, Ota M. Protein Sci 33 e4934 (2024)


Reviews citing this publication (11)

  1. RNA-binding proteins: modular design for efficient function. Lunde BM, Moore C, Varani G. Nat Rev Mol Cell Biol 8 479-490 (2007)
  2. What macromolecular crowding can do to a protein. Kuznetsova IM, Turoverov KK, Uversky VN. Int J Mol Sci 15 23090-23140 (2014)
  3. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Brayer KJ, Segal DJ. Cell Biochem Biophys 50 111-131 (2008)
  4. Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Uversky VN. Protein J 28 305-325 (2009)
  5. Eukaryotic 5S rRNA biogenesis. Ciganda M, Williams N. Wiley Interdiscip Rev RNA 2 523-533 (2011)
  6. Roles of intrinsic disorder in protein-nucleic acid interactions. Dyson HJ. Mol Biosyst 8 97-104 (2012)
  7. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FH. Prog Nucl Magn Reson Spectrosc 58 1-61 (2011)
  8. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Cell Mol Life Sci 75 3907-3929 (2018)
  9. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Uversky VN. Biotechnol J 10 356-366 (2015)
  10. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. Vannini A. Biochim Biophys Acta 1829 258-264 (2013)
  11. Integrating Wheat Nucleolus Structure and Function: Variation in the Wheat Ribosomal RNA and Protein Genes. Appels R, Wang P, Islam S. Front Plant Sci 12 686586 (2021)

Articles citing this publication (27)

  1. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Parisien M, Major F. Nature 452 51-55 (2008)
  2. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Teplova M, Patel DJ. Nat Struct Mol Biol 15 1343-1351 (2008)
  3. Structure of the 5' nontranslated region of the coxsackievirus b3 genome: Chemical modification and comparative sequence analysis. Bailey JM, Tapprich WE. J Virol 81 650-668 (2007)
  4. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa). Liu Q, Wang Z, Xu X, Zhang H, Li C. PLoS One 10 e0134753 (2015)
  5. The protein-binding potential of C2H2 zinc finger domains. Brayer KJ, Kulshreshtha S, Segal DJ. Cell Biochem Biophys 51 9-19 (2008)
  6. Chaperoning 5S RNA assembly. Madru C, Lebaron S, Blaud M, Delbos L, Pipoli J, Pasmant E, Réty S, Leulliot N. Genes Dev 29 1432-1446 (2015)
  7. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II. Wang Y, Qu J, Ji S, Wallace AJ, Wu J, Li Y, Gopalan V, Ding B. Plant Cell 28 1094-1107 (2016)
  8. Pre-folding IkappaBalpha alters control of NF-kappaB signaling. Truhlar SM, Mathes E, Cervantes CF, Ghosh G, Komives EA. J Mol Biol 380 67-82 (2008)
  9. The Hantavirus Glycoprotein G1 Tail Contains Dual CCHC-type Classical Zinc Fingers. Estrada DF, Boudreaux DM, Zhong D, St Jeor SC, De Guzman RN. J Biol Chem 284 8654-8660 (2009)
  10. tRNA modification profiles of the fast-proliferating cancer cells. Dong C, Niu L, Song W, Xiong X, Zhang X, Zhang Z, Yang Y, Yi F, Zhan J, Zhang H, Yang Z, Zhang LH, Zhai S, Li H, Ye M, Du Q. Biochem Biophys Res Commun 476 340-345 (2016)
  11. The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50s ribosomal subunits. Shankar N, Kennedy SD, Chen G, Krugh TR, Turner DH. Biochemistry 45 11776-11789 (2006)
  12. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity. Wai DC, Shihab M, Low JK, Mackay JP. Nucleic Acids Res 44 9153-9165 (2016)
  13. Structural Basis for Interaction of the Tandem Zinc Finger Domains of Human Muscleblind with Cognate RNA from Human Cardiac Troponin T. Park S, Phukan PD, Zeeb M, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochemistry 56 4154-4168 (2017)
  14. Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C. Nucleic Acids Res 36 5832-5844 (2008)
  15. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. Jiao Z, Wang L, Du H, Wang Y, Wang W, Liu J, Huang J, Huang W, Ge L. BMC Plant Biol 20 401 (2020)
  16. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster. Lee BM, Buck-Koehntop BA, Martinez-Yamout MA, Dyson HJ, Wright PE. J Mol Biol 371 1274-1289 (2007)
  17. Structural characterization of interactions between the double-stranded RNA-binding zinc finger protein JAZ and nucleic acids. Burge RG, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochemistry 53 1495-1510 (2014)
  18. Understanding the interactability of chikungunya virus proteins via molecular recognition feature analysis. Singh A, Kumar A, Uversky VN, Giri R. RSC Adv 8 27293-27303 (2018)
  19. A remodeled RNA polymerase II complex catalyzing viroid RNA-templated transcription. Dissanayaka Mudiyanselage SD, Ma J, Pechan T, Pechanova O, Liu B, Wang Y. PLoS Pathog 18 e1010850 (2022)
  20. RNA aptamer inhibitors of a restriction endonuclease. Mondragón E, Maher LJ. Nucleic Acids Res 43 7544-7555 (2015)
  21. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. Bédard M, Roy V, Montagne M, Lavigne P. J Biol Chem 292 3323-3340 (2017)
  22. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Mol Cell 83 2641-2652.e7 (2023)
  23. The structural properties of DNA regulate gene expression. Soltani S, Askari H, Ejlali N, Aghdam R. Mol Biosyst 10 273-280 (2014)
  24. RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Nishikawa T, Wojciak JM, Dyson HJ, Wright PE. Biochemistry 59 3889-3901 (2020)
  25. Structural transitions upon guide RNA binding and their importance in Cas12g-mediated RNA cleavage. Liu M, Li Z, Chen J, Lin J, Lu Q, Ye Y, Zhang H, Zhang B, Ouyang S. PLoS Genet 19 e1010930 (2023)
  26. Outline of an experimental design aimed to detect a protein A mirror image in solution. Martin OA, Vorobjev Y, Scheraga HA, Vila JA. PeerJ Phys Chem 1 e2 (2019)
  27. Structural analysis of zinc-finger (TTK) + [Cu(BPA)]2+ /[Cu(IDB)]2+ + DNA complexes: an investigation by molecular dynamics simulation. Wang Y, Zhu Y, Wang Y, Chen G. J Mol Recognit 24 981-994 (2011)