1xow Citations

Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance.

Mol Cell 16 425-38 (2004)
Related entries: 1xq3, 2ao6

Cited: 172 times
EuropePMC logo PMID: 15525515

Abstract

The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.

Reviews - 1xow mentioned but not cited (2)

  1. Androgen receptor: structure, role in prostate cancer and drug discovery. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Acta Pharmacol Sin 36 3-23 (2015)
  2. Emerging New Concepts of Degrader Technologies. Ding Y, Fei Y, Lu B. Trends Pharmacol Sci 41 464-474 (2020)

Articles - 1xow mentioned but not cited (13)

  1. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. Zhou XE, Suino-Powell KM, Li J, He Y, Mackeigan JP, Melcher K, Yong EL, Xu HE. J Biol Chem 285 9161-9171 (2010)
  2. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  3. Trinucleotide repeats: a structural perspective. Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Front Neurol 4 76 (2013)
  4. Endostatin: A novel inhibitor of androgen receptor function in prostate cancer. Lee JH, Isayeva T, Larson MR, Sawant A, Cha HR, Chanda D, Chesnokov IN, Ponnazhagan S. Proc Natl Acad Sci U S A 112 1392-1397 (2015)
  5. Fragment-based Shape Signatures: a new tool for virtual screening and drug discovery. Zauhar RJ, Gianti E, Welsh WJ. J Comput Aided Mol Des 27 1009-1036 (2013)
  6. Allosteric interactions prime androgen receptor dimerization and activation. Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL. Mol Cell 82 2021-2031.e5 (2022)
  7. Antagonizing the Androgen Receptor with a Biomimetic Acyltransferase. Zhang Y, Mantravadi PK, Jobbagy S, Bao W, Koh JT. ACS Chem Biol 11 2797-2802 (2016)
  8. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Choudhary N, Singh V. Sci Rep 9 10565 (2019)
  9. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress. Lee JH, Kang M, Wang H, Naik G, Mobley JA, Sonpavde G, Garvey WT, Darley-Usmar VM, Ponnazhagan S. FASEB J 31 1608-1619 (2017)
  10. Hits Discovery on the Androgen Receptor: In Silico Approaches to Identify Agonist Compounds. Réau M, Lagarde N, Zagury JF, Montes M. Cells 8 E1431 (2019)
  11. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods. Osimitz TG, Welsh WJ, Ai N, Toole C. Food Chem Toxicol 75 128-138 (2015)
  12. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  13. N/C Interactions Are Dispensable for Normal In Vivo Functioning of the Androgen Receptor in Male Mice. El Kharraz S, Dubois V, Launonen KM, Helminen L, Palvimo JJ, Libert C, Smeets E, Moris L, Eerlings R, Vanderschueren D, Helsen C, Claessens F. Endocrinology 163 bqac104 (2022)


Reviews citing this publication (48)

  1. Chemistry and structural biology of androgen receptor. Gao W, Bohl CE, Dalton JT. Chem Rev 105 3352-3370 (2005)
  2. Alternatively spliced androgen receptor variants. Dehm SM, Tindall DJ. Endocr Relat Cancer 18 R183-96 (2011)
  3. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Huang P, Chandra V, Rastinejad F. Annu Rev Physiol 72 247-272 (2010)
  4. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Oncogene 33 2815-2825 (2014)
  5. Nuclear receptor structure: implications for function. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Annu Rev Physiol 69 201-220 (2007)
  6. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Int J Cancer 120 719-733 (2007)
  7. The androgen receptor in health and disease. Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A, Kato S. Annu Rev Physiol 75 201-224 (2013)
  8. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Nucl Recept Signal 6 e008 (2008)
  9. The changing therapeutic landscape of castration-resistant prostate cancer. Yap TA, Zivi A, Omlin A, de Bono JS. Nat Rev Clin Oncol 8 597-610 (2011)
  10. Small molecule inhibitors targeting the "achilles' heel" of androgen receptor activity. Sadar MD. Cancer Res 71 1208-1213 (2011)
  11. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Lavery DN, McEwan IJ. Biochem J 391 449-464 (2005)
  12. The contribution of different androgen receptor domains to receptor dimerization and signaling. Centenera MM, Harris JM, Tilley WD, Butler LM. Mol Endocrinol 22 2373-2382 (2008)
  13. Posttranslational modification of the androgen receptor in prostate cancer. van der Steen T, Tindall DJ, Huang H. Int J Mol Sci 14 14833-14859 (2013)
  14. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Feng Q, He B. Front Oncol 9 858 (2019)
  15. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Kumar R, McEwan IJ. Endocr Rev 33 271-299 (2012)
  16. Androgen insensitivity syndrome. Mongan NP, Tadokoro-Cuccaro R, Bunch T, Hughes IA. Best Pract Res Clin Endocrinol Metab 29 569-580 (2015)
  17. Androgen receptor coregulators: recruitment via the coactivator binding groove. van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Mol Cell Endocrinol 352 57-69 (2012)
  18. Androgen receptor-cofactor interactions as targets for new drug discovery. Chang CY, McDonnell DP. Trends Pharmacol Sci 26 225-228 (2005)
  19. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. McEwan IJ. Mol Biosyst 8 82-90 (2012)
  20. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. Mol Cell Endocrinol 348 394-402 (2012)
  21. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. McEwan IJ, Lavery D, Fischer K, Watt K. Nucl Recept Signal 5 e001 (2007)
  22. Structural and functional insights into nuclear receptor signaling. Jin L, Li Y. Adv Drug Deliv Rev 62 1218-1226 (2010)
  23. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Caboni L, Lloyd DG. Med Res Rev 33 1081-1118 (2013)
  24. Constitutive activity of the androgen receptor. Chan SC, Dehm SM. Adv Pharmacol 70 327-366 (2014)
  25. Recent developments in antiandrogens and selective androgen receptor modulators. Haendler B, Cleve A. Mol Cell Endocrinol 352 79-91 (2012)
  26. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Wen S, Niu Y, Huang H. Asian J Urol 7 203-218 (2020)
  27. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Lallous N, Dalal K, Cherkasov A, Rennie PS. Int J Mol Sci 14 12496-12519 (2013)
  28. Small molecule inhibitors as probes for estrogen and androgen receptor action. Shapiro DJ, Mao C, Cherian MT. J Biol Chem 286 4043-4048 (2011)
  29. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Brand LJ, Dehm SM. Curr Drug Targets 14 441-449 (2013)
  30. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Askew EB, Minges JT, Hnat AT, Wilson EM. Mol Cell Endocrinol 348 403-410 (2012)
  31. Androgen receptor as a therapeutic target. Gao W. Adv Drug Deliv Rev 62 1277-1284 (2010)
  32. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Sadar MD. Expert Opin Drug Discov 15 551-560 (2020)
  33. Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Estébanez-Perpiñá E, Bevan CL, McEwan IJ. Cancers (Basel) 13 509 (2021)
  34. Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cucchiara V, Yang JC, Mirone V, Gao AC, Rosenfeld MG, Evans CP. Cancers (Basel) 9 E9 (2017)
  35. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. Cold Spring Harb Perspect Med 8 a030478 (2018)
  36. The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy. Fiandalo MV, Wu W, Mohler JL. Curr Drug Targets 14 420-440 (2013)
  37. Molecular Mechanisms and Therapeutics for SBMA/Kennedy's Disease. Arnold FJ, Merry DE. Neurotherapeutics 16 928-947 (2019)
  38. Current status of treatment of spinal and bulbar muscular atrophy. Tanaka F, Katsuno M, Banno H, Suzuki K, Adachi H, Sobue G. Neural Plast 2012 369284 (2012)
  39. Steroid receptor/coactivator binding inhibitors: An update. Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Mol Cell Endocrinol 493 110471 (2019)
  40. The role of cofactors in sex steroid action. Trapman J, Dubbink HJ. Best Pract Res Clin Endocrinol Metab 21 403-414 (2007)
  41. 46,XY disorders of sex development--the undermasculinised male with disorders of androgen action. Werner R, Grötsch H, Hiort O. Best Pract Res Clin Endocrinol Metab 24 263-277 (2010)
  42. Androgen and estrogen receptors: potential of crystallography in the fight against cancer. Nahoum V, Bourguet W. Int J Biochem Cell Biol 39 1280-1287 (2007)
  43. Androgen receptor modulators: a marriage of chemistry and biology. McEwan IJ. Future Med Chem 5 1109-1120 (2013)
  44. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting. Kumar R. Asian J Androl 18 682-686 (2016)
  45. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells. Pathak R, Philizaire M, Mujtaba S. Cancers (Basel) 7 1622-1642 (2015)
  46. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development. Metzler VM, de Brot S, Robinson RS, Jeyapalan JN, Rakha E, Walton T, Gardner DS, Lund EF, Whitchurch J, Haigh D, Lochray JM, Robinson BD, Allegrucci C, Fray RG, Persson JL, Ødum N, Miftakhova RR, Rizvanov AA, Hughes IA, Tadokoro-Cuccaro R, Heery DM, Rutland CS, Mongan NP. Placenta 56 79-85 (2017)
  47. The role of ubiquitination in spinal and bulbar muscular atrophy. Sengupta M, Pluciennik A, Merry DE. Front Mol Neurosci 15 1020143 (2022)
  48. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Int J Mol Sci 25 476 (2023)

Articles citing this publication (109)

  1. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Cancer Res 68 5469-5477 (2008)
  2. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Proc Natl Acad Sci U S A 102 6201-6206 (2005)
  3. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Chen Y, Clegg NJ, Scher HI. Lancet Oncol 10 981-991 (2009)
  4. A surface on the androgen receptor that allosterically regulates coactivator binding. Estébanez-Perpiñá E, Arnold LA, Nguyen P, Rodrigues ED, Mar E, Bateman R, Pallai P, Shokat KM, Baxter JD, Guy RK, Webb P, Fletterick RJ. Proc Natl Acad Sci U S A 104 16074-16079 (2007)
  5. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP. Neuron 67 936-952 (2010)
  6. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI. Proc Natl Acad Sci U S A 102 9802-9807 (2005)
  7. Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Pereira de Jésus-Tran K, Côté PL, Cantin L, Blanchet J, Labrie F, Breton R. Protein Sci 15 987-999 (2006)
  8. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KA, Voytas DF, Dehm SM. Proc Natl Acad Sci U S A 110 17492-17497 (2013)
  9. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. J Biol Chem 282 25801-25816 (2007)
  10. Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, Lin LY, Wolf IM, Cohn MJ, Baskin LS, Sa Nchez ER, Shou W. J Biol Chem 282 5026-5036 (2007)
  11. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, Singh K, Azad AA, Wyatt AW, LeBihan S, Chi KN, Gleave ME, Rennie PS, Collins CC, Cherkasov A. Genome Biol 17 10 (2016)
  12. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. J Biol Chem 280 37747-37754 (2005)
  13. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Bai S, He B, Wilson EM. Mol Cell Biol 25 1238-1257 (2005)
  14. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh JT, Ahn JM, Raj GV. Nat Commun 4 1923 (2013)
  15. Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer. Dalal K, Roshan-Moniri M, Sharma A, Li H, Ban F, Hessein M, Hsing M, Singh K, LeBlanc E, Dehm S, Tomlinson Guns ES, Cherkasov A, Rennie PS. J Biol Chem 289 26417-26429 (2014)
  16. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. Dehm SM, Tindall DJ. J Biol Chem 281 27882-27893 (2006)
  17. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Duff J, McEwan IJ. Mol Endocrinol 19 2943-2954 (2005)
  18. A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Li J, Fu J, Toumazou C, Yoon HG, Wong J. Mol Endocrinol 20 776-785 (2006)
  19. Androgen receptor gene mutation, rearrangement, polymorphism. Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z. Transl Androl Urol 2 137-147 (2013)
  20. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Mol Cell 79 812-823.e4 (2020)
  21. An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. Orr CR, Montie HL, Liu Y, Bolzoni E, Jenkins SC, Wilson EM, Joseph JD, McDonnell DP, Merry DE. J Biol Chem 285 35567-35577 (2010)
  22. Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor. Bai S, Wilson EM. Mol Cell Biol 28 1947-1963 (2008)
  23. Recapitulation and design of protein binding peptide structures and sequences. Sood VD, Baker D. J Mol Biol 357 917-927 (2006)
  24. Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. van de Wijngaart DJ, van Royen ME, Hersmus R, Pike AC, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ. J Biol Chem 281 19407-19416 (2006)
  25. The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. Hay CW, McEwan IJ. PLoS One 7 e32514 (2012)
  26. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer. Rao S, Lyons LS, Fahrenholtz CD, Wu F, Farooq A, Balkan W, Burnstein KL. Oncogene 31 716-727 (2012)
  27. Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. Askew EB, Bai S, Hnat AT, Minges JT, Wilson EM. J Biol Chem 284 34793-34808 (2009)
  28. Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling. Askew EB, Bai S, Blackwelder AJ, Wilson EM. J Biol Chem 285 21824-21836 (2010)
  29. Structural basis for androgen receptor agonists and antagonists: interaction of SPEED 98-listed chemicals and related compounds with the androgen receptor based on an in vitro reporter gene assay and 3D-QSAR. Tamura H, Ishimoto Y, Fujikawa T, Aoyama H, Yoshikawa H, Akamatsu M. Bioorg Med Chem 14 7160-7174 (2006)
  30. Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Eftekharzadeh B, Banduseela VC, Chiesa G, Martínez-Cristóbal P, Rauch JN, Nath SR, Schwarz DMC, Shao H, Marin-Argany M, Di Sanza C, Giorgetti E, Yu Z, Pierattelli R, Felli IC, Brun-Heath I, García J, Nebreda ÁR, Gestwicki JE, Lieberman AP, Salvatella X. Nat Commun 10 3562 (2019)
  31. Structural and functional characterization of the interdomain interaction in the mineralocorticoid receptor. Pippal JB, Yao Y, Rogerson FM, Fuller PJ. Mol Endocrinol 23 1360-1370 (2009)
  32. Stearoyl CoA desaturase (SCD) facilitates proliferation of prostate cancer cells through enhancement of androgen receptor transactivation. Kim SJ, Choi H, Park SS, Chang C, Kim E. Mol Cells 31 371-377 (2011)
  33. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. J Biol Chem 285 5097-5105 (2010)
  34. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. Su S, Minges JT, Grossman G, Blackwelder AJ, Mohler JL, Wilson EM. J Biol Chem 288 24809-24824 (2013)
  35. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). Africander DJ, Storbeck KH, Hapgood JP. J Steroid Biochem Mol Biol 143 404-415 (2014)
  36. Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ. Mol Endocrinol 24 1935-1948 (2010)
  37. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif. Jehle K, Cato L, Neeb A, Muhle-Goll C, Jung N, Smith EW, Buzon V, Carbó LR, Estébanez-Perpiñá E, Schmitz K, Fruk L, Luy B, Chen Y, Cox MB, Bräse S, Brown M, Cato AC. J Biol Chem 289 8839-8851 (2014)
  38. Androgen receptor molecular biology and potential targets in prostate cancer. Wilson EM. Ther Adv Urol 2 105-117 (2010)
  39. Peroxisome proliferator-activated receptor-gamma and growth inhibition by its ligands in prostate cancer. Nagata D, Yoshihiro H, Nakanishi M, Naruyama H, Okada S, Ando R, Tozawa K, Kohri K. Cancer Detect Prev 32 259-266 (2008)
  40. Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. Minges JT, Su S, Grossman G, Blackwelder AJ, Pop EA, Mohler JL, Wilson EM. J Biol Chem 288 1939-1952 (2013)
  41. Ultrafast protein structure-based virtual screening with Panther. Niinivehmas SP, Salokas K, Lätti S, Raunio H, Pentikäinen OT. J Comput Aided Mol Des 29 989-1006 (2015)
  42. Communication between the ERRalpha homodimer interface and the PGC-1alpha binding surface via the helix 8-9 loop. Greschik H, Althage M, Flaig R, Sato Y, Chavant V, Peluso-Iltis C, Choulier L, Cronet P, Rochel N, Schüle R, Strömstedt PE, Moras D. J Biol Chem 283 20220-20230 (2008)
  43. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, Jenster G. Mol Endocrinol 23 1776-1786 (2009)
  44. Regulation of androgen receptor-dependent transcription by coactivator MED1 is mediated through a newly discovered noncanonical binding motif. Jin F, Claessens F, Fondell JD. J Biol Chem 287 858-870 (2012)
  45. Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Wasmuth EV, Hoover EA, Antar A, Klinge S, Chen Y, Sawyers CL. Proc Natl Acad Sci U S A 117 8584-8592 (2020)
  46. ARA24/Ran enhances the androgen-dependent NH2- and COOH-terminal interaction of the androgen receptor. Harada N, Ohmori Y, Yamaji R, Higashimura Y, Okamoto K, Isohashi F, Nakano Y, Inui H. Biochem Biophys Res Commun 373 373-377 (2008)
  47. Analysis of interdomain interactions of the androgen receptor. Wilson EM. Methods Mol Biol 776 113-129 (2011)
  48. Multiple binding modes between HNF4alpha and the LXXLL motifs of PGC-1alpha lead to full activation. Rha GB, Wu G, Shoelson SE, Chi YI. J Biol Chem 284 35165-35176 (2009)
  49. Preventing the Androgen Receptor N/C Interaction Delays Disease Onset in a Mouse Model of SBMA. Zboray L, Pluciennik A, Curtis D, Liu Y, Berman-Booty LD, Orr C, Kesler CT, Berger T, Gioeli D, Paschal BM, Merry DE. Cell Rep 13 2312-2323 (2015)
  50. Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity. Suzuki E, Zhao Y, Ito S, Sawatsubashi S, Murata T, Furutani T, Shirode Y, Yamagata K, Tanabe M, Kimura S, Ueda T, Fujiyama S, Lim J, Matsukawa H, Kouzmenko AP, Aigaki T, Tabata T, Takeyama K, Kato S. Proc Natl Acad Sci U S A 106 3818-3822 (2009)
  51. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer. Shen HC, Shanmugasundaram K, Simon NI, Cai C, Wang H, Chen S, Balk SP, Rigby AC. Mol Endocrinol 26 1836-1846 (2012)
  52. Primate-specific melanoma antigen-A11 regulates isoform-specific human progesterone receptor-B transactivation. Su S, Blackwelder AJ, Grossman G, Minges JT, Yuan L, Young SL, Wilson EM. J Biol Chem 287 34809-34824 (2012)
  53. Androgen receptor exon 1 mutation causes androgen insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11 activation of NH2- and carboxyl-terminal interaction-dependent transactivation. Lagarde WH, Blackwelder AJ, Minges JT, Hnat AT, French FS, Wilson EM. J Biol Chem 287 10905-10915 (2012)
  54. Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus. Blessing AM, Ganesan S, Rajapakshe K, Ying Sung Y, Reddy Bollu L, Shi Y, Cheung E, Coarfa C, Chang JT, McDonnell DP, Frigo DE. Mol Endocrinol 29 1426-1439 (2015)
  55. Positive feedback loop mediated by protein phosphatase 1α mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer. Liu X, Gao Y, Ye H, Gerrin S, Ma F, Wu Y, Zhang T, Russo J, Cai C, Yuan X, Liu J, Chen S, Balk SP. Nucleic Acids Res 45 3738-3751 (2017)
  56. Gain in transcriptional activity by primate-specific coevolution of melanoma antigen-A11 and its interaction site in androgen receptor. Liu Q, Su S, Blackwelder AJ, Minges JT, Wilson EM. J Biol Chem 286 29951-29963 (2011)
  57. A novel function of caspase-8 in the regulation of androgen-receptor-driven gene expression. Qi W, Wu H, Yang L, Boyd DD, Wang Z. EMBO J 26 65-75 (2007)
  58. Molecular Dynamics Simulations Revealed the Regulation of Ligands to the Interactions between Androgen Receptor and Its Coactivator. Liu N, Zhou W, Guo Y, Wang J, Fu W, Sun H, Li D, Duan M, Hou T. J Chem Inf Model 58 1652-1661 (2018)
  59. Multivalent Peptoid Conjugates Which Overcome Enzalutamide Resistance in Prostate Cancer Cells. Wang Y, Dehigaspitiya DC, Levine PM, Profit AA, Haugbro M, Imberg-Kazdan K, Logan SK, Kirshenbaum K, Garabedian MJ. Cancer Res 76 5124-5132 (2016)
  60. Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. Fantappié MR, Bastos de Oliveira FM, de Moraes Maciel R, Rumjanek FD, Wu W, Loverde PT. Int J Parasitol 38 1133-1147 (2008)
  61. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Chen L, Aleshin AE, Alitongbieke G, Zhou Y, Zhang X, Ye X, Hu M, Ren G, Chen Z, Ma Y, Zhang D, Liu S, Gao W, Cai L, Wu L, Zeng Z, Jiang F, Liu J, Zhou H, Cadwell G, Liddington RC, Su Y, Zhang XK. Nat Commun 8 16066 (2017)
  62. Muscle-bound? A tissue-selective nonsteroidal androgen receptor modulator. Wilson EM. Endocrinology 148 1-3 (2007)
  63. Targeting AR Variant-Coactivator Interactions to Exploit Prostate Cancer Vulnerabilities. Magani F, Peacock SO, Rice MA, Martinez MJ, Greene AM, Magani PS, Lyles R, Weitz JR, Burnstein KL. Mol Cancer Res 15 1469-1480 (2017)
  64. Androgen receptor regulation by histone methyltransferase Suppressor of variegation 3-9 homolog 2 and Melanoma antigen-A11. Askew EB, Bai S, Parris AB, Minges JT, Wilson EM. Mol Cell Endocrinol 443 42-51 (2017)
  65. Dynamic communication between androgen and coactivator: mutually induced conformational perturbations in androgen receptor ligand-binding domain. Xu X, Yang W, Wang X, Li Y, Wang Y, Ai C. Proteins 79 1154-1171 (2011)
  66. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Elhaji YA, Stoica I, Dennis S, Purisima EO, Lumbroso R, Beitel LK, Trifiro MA. Hum Mol Genet 15 921-931 (2006)
  67. Resveratrol inhibits proliferation and promotes apoptosis via the androgen receptor splicing variant 7 and PI3K/AKT signaling pathway in LNCaP prostate cancer cells. Ye M, Tian H, Lin S, Mo J, Li Z, Chen X, Liu J. Oncol Lett 20 169 (2020)
  68. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells. Wang D, Nguyen MM, Masoodi KZ, Singh P, Jing Y, O'Malley K, Dar JA, Dhir R, Wang Z. Mol Endocrinol 29 1731-1742 (2015)
  69. Mechanism of androgen receptor corepression by CKβBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer. Tan JA, Bai S, Grossman G, Titus MA, Harris Ford O, Pop EA, Smith GJ, Mohler JL, Wilson EM, French FS. Mol Cell Endocrinol 382 302-313 (2014)
  70. Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Jenster G, Trapman J. Prostate 71 241-253 (2011)
  71. Ligand induced dissociation of the AR homodimer precedes AR monomer translocation to the nucleus. Shizu R, Yokobori K, Perera L, Pedersen L, Negishi M. Sci Rep 9 16734 (2019)
  72. Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. Todd TW, Kokubu H, Miranda HC, Cortes CJ, La Spada AR, Lim J. Elife 4 e08493 (2015)
  73. The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation. El Kharraz S, Dubois V, van Royen ME, Houtsmuller AB, Pavlova E, Atanassova N, Nguyen T, Nguyen T, Voet A, Eerlings R, Handle F, Prekovic S, Smeets E, Moris L, Devlies W, Ohlsson C, Poutanen M, Verstrepen KJ, Carmeliet G, Launonen KM, Helminen L, Palvimo JJ, Libert C, Vanderschueren D, Helsen C, Claessens F. EMBO Rep 22 e52764 (2021)
  74. Uncoupling of hormone-dependence from chaperone-dependence in the L701H mutation of the androgen receptor. Robzyk K, Oen H, Buchanan G, Butler LM, Tilley WD, Mandal AK, Rosen N, Caplan AJ. Mol Cell Endocrinol 268 67-74 (2007)
  75. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation. Wong HY, Hoogerbrugge JW, Pang KL, van Leeuwen M, van Royen ME, Molier M, Berrevoets CA, Dooijes D, Dubbink HJ, van de Wijngaart DJ, Wolffenbuttel KP, Trapman J, Kleijer WJ, Drop SL, Grootegoed JA, Brinkmann AO. Mol Cell Endocrinol 292 69-78 (2008)
  76. Rational design of novel antiandrogens for neutralizing androgen receptor function in hormone refractory prostate cancer. Singh P, Hallur G, Anchoori RK, Bakare O, Kageyama Y, Khan SR, Isaacs JT. Prostate 68 1570-1581 (2008)
  77. A Targeted Bivalent Androgen Receptor Binding Compound for Prostate Cancer Therapy. Chowdhury S, Beitel LK, Lumbroso R, Purisima EO, Paliouras M, Trifiro M. Horm Cancer 10 24-35 (2019)
  78. An investigation into CAG repeat length variation and N/C terminal interactions in the T877A mutant androgen receptor found in prostate cancer. Southwell J, Chowdhury SF, Gottlieb B, Beitel LK, Lumbroso R, Purisima EO, Trifiro M. J Steroid Biochem Mol Biol 111 138-146 (2008)
  79. Androgen receptor splice variant 7 functions independently of the full length receptor in prostate cancer cells. Liang J, Wang L, Poluben L, Nouri M, Arai S, Xie L, Voznesensky OS, Cato L, Yuan X, Russo JW, Long HW, Brown M, Chen S, Balk SP. Cancer Lett 519 172-184 (2021)
  80. Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim IK, Du KP, Abbas T, Sherman NE, Wotton D, Paschal BM. Nat Commun 12 2705 (2021)
  81. Computational design, synthesis, and evaluation of miniproteins as androgen receptor coactivator mimics. Vaz B, Möcklinghoff S, Folkertsma S, Lusher S, de Vlieg J, Brunsveld L. Chem Commun (Camb) 5377-5379 (2009)
  82. Conformational dynamics of androgen receptors bound to agonists and antagonists. Gim HJ, Park J, Jung ME, Houk KN. Sci Rep 11 15887 (2021)
  83. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. Wang X, Li X, Shi W, Wei S, Giesy JP, Yu H, Wang Y. Ecotoxicol Environ Saf 89 143-149 (2013)
  84. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens. Bobach C, Tennstedt S, Palberg K, Denkert A, Brandt W, de Meijere A, Seliger B, Wessjohann LA. Eur J Med Chem 90 267-279 (2015)
  85. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations. Sakkiah S, Kusko R, Pan B, Guo W, Ge W, Tong W, Hong H. Front Pharmacol 9 492 (2018)
  86. Water Pharmacophore: Designing Ligands using Molecular Dynamics Simulations with Water. Jung SW, Kim M, Ramsey S, Kurtzman T, Cho AE. Sci Rep 8 10400 (2018)
  87. A naturally occurring mutation in the human androgen receptor of a subject with complete androgen insensitivity confers binding and transactivation by estradiol. Bonagura TW, Deng M, Brown TR. Mol Cell Endocrinol 263 79-89 (2007)
  88. Evolution of Melanoma Antigen-A11 (MAGEA11) During Primate Phylogeny. Willett CS, Wilson EM. J Mol Evol 86 240-253 (2018)
  89. Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE. Protein Expr Purif 71 21-27 (2010)
  90. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Prostate 78 1140-1156 (2018)
  91. Perspectives on designs of antiandrogens for prostate cancer. Estébanez-Perpiñá E, Jouravel N, Fletterick RJ. Expert Opin Drug Discov 2 1341-1355 (2007)
  92. Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. Silva-Ortiz AV, Bratoeff E, Ramírez-Apan MT, García-Becerra R, Ordaz-Rosado D, Noyola-Martínez N, Castillo-Bocanegra R, Barrera D. J Steroid Biochem Mol Biol 159 8-18 (2016)
  93. An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation. Oppong E, Stier G, Gaal M, Seeger R, Stoeck M, Delsuc MA, Cato ACB, Kieffer B. Biomolecules 7 E44 (2017)
  94. Determination of the androgenicity of ligands using a single-chain probe carrying androgen receptor N-terminal peptides. Kim SB, Umezawa Y, Tao H. Anal Sci 25 1415-1420 (2009)
  95. Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Yi P, Yu X, Wang Z, O'Malley BW. Essays Biochem 65 857-866 (2021)
  96. Computational analysis of androgen receptor (AR) variants to decipher the relationship between protein stability and related-diseases. Chen F, Chen X, Jiang F, Leng F, Liu W, Gui Y, Yu J. Sci Rep 10 12101 (2020)
  97. Structural basis for computational screening of non-steroidal androgen receptor ligands. Nyrönen TH, Söderholm AA. Expert Opin Drug Discov 5 5-20 (2010)
  98. Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer. Landau KS, Na I, Schenck RO, Uversky VN. Asian J Androl 18 662-672 (2016)
  99. Androgen receptor suppresses β-adrenoceptor-mediated CREB activation and thermogenesis in brown adipose tissue of male mice. Harada N, Kubo K, Onishi T, Kitakaze T, Goto T, Inui H, Yamaji R. J Biol Chem 298 102619 (2022)
  100. Computational Analysis of Residue-Specific Binding Free Energies of Androgen Receptor to Ligands. Shao G, Bao J, Pan X, He X, Qi Y, Zhang JZH. Front Mol Biosci 8 646524 (2021)
  101. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Chen L, Zhang Z, Han Q, Maity BK, Rodrigues L, Zboril E, Adhikari R, Ko SH, Li X, Yoshida SR, Xue P, Smith E, Xu K, Wang Q, Huang TH, Chong S, Liu Z. Mol Cell 83 3438-3456.e12 (2023)
  102. Molecular and structural basis of androgen receptor responses to dihydrotestosterone, medroxyprogesterone acetate and Δ(4)-tibolone. Bianco-Miotto T, Trotta AP, Need EF, Lee AM, Ochnik AM, Giorgio L, Leach DA, Swinstead EE, O'Loughlin MA, Newman MR, Birrell SN, Butler LM, Harris JM, Buchanan G. Mol Cell Endocrinol 382 899-908 (2014)
  103. Rational optimization of a transcription factor activation domain inhibitor. Basu S, Martínez-Cristóbal P, Frigolé-Vivas M, Pesarrodona M, Lewis M, Szulc E, Bañuelos CA, Sánchez-Zarzalejo C, Bielskutė S, Zhu J, Pombo-García K, Garcia-Cabau C, Zodi L, Dockx H, Smak J, Kaur H, Batlle C, Mateos B, Biesaga M, Escobedo A, Bardia L, Verdaguer X, Ruffoni A, Mawji NR, Wang J, Obst JK, Tam T, Brun-Heath I, Ventura S, Meierhofer D, García J, Robustelli P, Stracker TH, Sadar MD, Riera A, Hnisz D, Salvatella X. Nat Struct Mol Biol 30 1958-1969 (2023)
  104. A carboxy-terminal ubiquitylation site regulates androgen receptor activity. Arai S, Gao Y, Yu Z, Xie L, Wang L, Zhang T, Nouri M, Chen S, Asara JM, Balk SP. Commun Biol 7 25 (2024)
  105. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. Acta Crystallogr F Struct Biol Commun 79 95-104 (2023)
  106. GR Utilizes a Co-Chaperone Cytoplasmic CAR Retention Protein to Form an N/C Interaction. Ohno M, Negishi M. Nucl Recept Signal 15 1550762918801072 (2018)
  107. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis. Miyagawa S, Yatsu R, Kohno S, Doheny BM, Ogino Y, Ishibashi H, Katsu Y, Ohta Y, Guillette LJ, Iguchi T. Endocrinology 156 2795-2806 (2015)
  108. Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer. Thiyagarajan T, Ponnusamy S, Hwang DJ, He Y, Asemota S, Young KL, Johnson DL, Bocharova V, Zhou W, Jain AK, Petricoin EF, Yin Z, Pfeffer LM, Miller DD, Narayanan R. Proc Natl Acad Sci U S A 120 e2211832120 (2023)
  109. Two somatic mutations in the androgen receptor N-terminal domain are oncogenic drivers in hepatocellular carcinoma. Ren QN, Huang DH, Zhang XN, Wang YN, Zhou YF, Zhang MY, Wang SC, Mai SJ, Wu DH, Wang HY. Commun Biol 7 22 (2024)