1dm2 Citations

Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent.

Abstract

Background

Over 2000 protein kinases regulate cellular functions. Screening for inhibitors of some of these kinases has already yielded some potent and selective compounds with promising potential for the treatment of human diseases.

Results

The marine sponge constituent hymenialdisine is a potent inhibitor of cyclin-dependent kinases, glycogen synthase kinase-3beta and casein kinase 1. Hymenialdisine competes with ATP for binding to these kinases. A CDK2-hymenialdisine complex crystal structure shows that three hydrogen bonds link hymenialdisine to the Glu81 and Leu83 residues of CDK2, as observed with other inhibitors. Hymenialdisine inhibits CDK5/p35 in vivo as demonstrated by the lack of phosphorylation/down-regulation of Pak1 kinase in E18 rat cortical neurons, and also inhibits GSK-3 in vivo as shown by the inhibition of MAP-1B phosphorylation. Hymenialdisine also blocks the in vivo phosphorylation of the microtubule-binding protein tau at sites that are hyperphosphorylated by GSK-3 and CDK5/p35 in Alzheimer's disease (cross-reacting with Alzheimer's-specific AT100 antibodies).

Conclusion

The natural product hymenialdisine is a new kinase inhibitor with promising potential applications for treating neurodegenerative disorders.

Reviews - 1dm2 mentioned but not cited (1)

  1. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Kan Y, Paung Y, Seeliger MA, Miller WT. Cells 12 900 (2023)

Articles - 1dm2 mentioned but not cited (10)

  1. Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. Jain AN. J Comput Aided Mol Des 23 355-374 (2009)
  2. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. Rueda M, Bottegoni G, Abagyan R. J Chem Inf Model 49 716-725 (2009)
  3. Rapid flexible docking using a stochastic rotamer library of ligands. Ding F, Yin S, Dokholyan NV. J Chem Inf Model 50 1623-1632 (2010)
  4. A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Bottegoni G, Kufareva I, Totrov M, Abagyan R. J Comput Aided Mol Des 22 311-325 (2008)
  5. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug. Shi XN, Li H, Yao H, Liu X, Li L, Leung KS, Kung HF, Lu D, Wong MH, Lin MC. PLoS One 10 e0132072 (2015)
  6. Binding-site assessment by virtual fragment screening. Huang N, Jacobson MP. PLoS One 5 e10109 (2010)
  7. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. Loving KA, Lin A, Cheng AC. PLoS Comput Biol 10 e1003741 (2014)
  8. EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities. Hsin KY, Morgan HP, Shave SR, Hinton AC, Taylor P, Walkinshaw MD. Nucleic Acids Res 39 D1042-8 (2011)
  9. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  10. An elongated tract of polyQ in the carboxyl‑terminus of human α1A calcium channel induces cell apoptosis by nuclear translocation. Sun J, Sun X, Li Z, Ma D, Lv Y. Oncol Rep 44 156-164 (2020)


Reviews citing this publication (69)

  1. GSK-3: tricks of the trade for a multi-tasking kinase. Doble BW, Woodgett JR. J Cell Sci 116 1175-1186 (2003)
  2. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Vermeulen K, Van Bockstaele DR, Berneman ZN. Cell Prolif 36 131-149 (2003)
  3. To cycle or not to cycle: a critical decision in cancer. Malumbres M, Barbacid M. Nat Rev Cancer 1 222-231 (2001)
  4. GSK3 inhibitors: development and therapeutic potential. Cohen P, Goedert M. Nat Rev Drug Discov 3 479-487 (2004)
  5. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. Cell Signal 17 675-689 (2005)
  6. Glycogen synthase kinase 3: more than a namesake. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Br J Pharmacol 156 885-898 (2009)
  7. Pharmacological inhibitors of cyclin-dependent kinases. Knockaert M, Greengard P, Meijer L. Trends Pharmacol Sci 23 417-425 (2002)
  8. Drugs from the deep: marine natural products as drug candidates. Haefner B. Drug Discov Today 8 536-544 (2003)
  9. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Martinez A, Castro A, Dorronsoro I, Alonso M. Med Res Rev 22 373-384 (2002)
  10. Natural products as a source of Alzheimer's drug leads. Williams P, Sorribas A, Howes MJ. Nat Prod Rep 28 48-77 (2011)
  11. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Mol Psychiatry 9 734-755 (2004)
  12. Judging a protein by more than its name: GSK-3. Woodgett JR. Sci STKE 2001 re12 (2001)
  13. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Peyressatre M, Prével C, Pellerano M, Morris MC. Cancers (Basel) 7 179-237 (2015)
  14. CDK inhibitors in cancer therapy, an overview of recent development. Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. Am J Cancer Res 11 1913-1935 (2021)
  15. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Perez DI, Gil C, Martinez A. Med Res Rev 31 924-954 (2011)
  16. Tau-based treatment strategies in neurodegenerative diseases. Schneider A, Mandelkow E. Neurotherapeutics 5 443-457 (2008)
  17. A submarine journey: the pyrrole-imidazole alkaloids. Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G. Mar Drugs 7 705-753 (2009)
  18. Alzheimer's disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Silva T, Reis J, Teixeira J, Borges F. Ageing Res Rev 15 116-145 (2014)
  19. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Al-Mourabit A, Zancanella MA, Tilvi S, Romo D. Nat Prod Rep 28 1229-1260 (2011)
  20. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mayer AM, Hamann MT. Mar Biotechnol (NY) 6 37-52 (2004)
  21. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. D'Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. Mar Drugs 10 812-833 (2012)
  22. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol Ther 93 99-111 (2002)
  23. Two sides of the same coin: Wnt signaling in neurodegeneration and neuro-oncology. Caricasole A, Bakker A, Copani A, Nicoletti F, Nicoletti F, Gaviraghi G, Terstappen GC. Biosci Rep 25 309-327 (2005)
  24. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. Trippier PC, Jansen Labby K, Hawker DD, Mataka JJ, Silverman RB. J Med Chem 56 3121-3147 (2013)
  25. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MI. Curr Genomics 18 106-131 (2017)
  26. Structure-based design of cyclin-dependent kinase inhibitors. Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble ME. Pharmacol Ther 93 125-133 (2002)
  27. Natural guanidine derivatives. Berlinck RG, Kossuga MH. Nat Prod Rep 22 516-550 (2005)
  28. Designing inhibitors of cyclin-dependent kinases. Hardcastle IR, Golding BT, Griffin RJ. Annu Rev Pharmacol Toxicol 42 325-348 (2002)
  29. Natural products as a rich source of tau-targeting drugs for Alzheimer's disease. Calcul L, Zhang B, Jinwal UK, Dickey CA, Baker BJ. Future Med Chem 4 1751-1761 (2012)
  30. Cyclin-dependent kinase inhibitors: novel anticancer agents. Mani S, Wang C, Wu K, Francis R, Pestell R. Expert Opin Investig Drugs 9 1849-1870 (2000)
  31. Kinase inhibitors from marine sponges. Skropeta D, Pastro N, Zivanovic A. Mar Drugs 9 2131-2154 (2011)
  32. CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Obligado SH, Ibraghimov-Beskrovnaya O, Zuk A, Meijer L, Nelson PJ. Kidney Int 73 684-690 (2008)
  33. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  34. Promising bioactive compounds from the marine environment and their potential effects on various diseases. Karthikeyan A, Joseph A, Nair BG. J Genet Eng Biotechnol 20 14 (2022)
  35. Tau as a therapeutic target for Alzheimer's disease. Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Curr Alzheimer Res 8 666-677 (2011)
  36. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM. BMC Neurosci 9 Suppl 2 S9 (2008)
  37. Mechanism targeted discovery of antitumor marine natural products. Nagle DG, Zhou YD, Mora FD, Mohammed KA, Kim YP. Curr Med Chem 11 1725-1756 (2004)
  38. Current pharmacotherapy and putative disease-modifying therapy for Alzheimer's disease. Kulshreshtha A, Piplani P. Neurol Sci 37 1403-1435 (2016)
  39. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. Choi DY, Choi H. Arch Pharm Res 38 139-170 (2015)
  40. Natural and synthetic bioactive inhibitors of glycogen synthase kinase. Khan I, Tantray MA, Alam MS, Hamid H. Eur J Med Chem 125 464-477 (2017)
  41. Marine invertebrate natural products for anti-inflammatory and chronic diseases. Senthilkumar K, Kim SK. Evid Based Complement Alternat Med 2013 572859 (2013)
  42. Natural products as kinase inhibitors. Liu J, Hu Y, Waller DL, Wang J, Liu Q. Nat Prod Rep 29 392-403 (2012)
  43. Bringing natural products into the fold - exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. Joyner PM, Cichewicz RH. Nat Prod Rep 28 26-47 (2011)
  44. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. La Clair JJ. Nat Prod Rep 27 969-995 (2010)
  45. Recent progress in neuroactive marine natural products. Sakai R, Swanson GT. Nat Prod Rep 31 273-309 (2014)
  46. A journey under the sea: the quest for marine anti-cancer alkaloids. Tohme R, Darwiche N, Gali-Muhtasib H. Molecules 16 9665-9696 (2011)
  47. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Loaëc N, Attanasio E, Villiers B, Durieu E, Tahtouh T, Cam M, Davis RA, Alencar A, Roué M, Bourguet-Kondracki ML, Proksch P, Limanton E, Guiheneuf S, Carreaux F, Bazureau JP, Klautau M, Meijer L. Mar Drugs 15 E316 (2017)
  48. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Catanesi M, Caioni G, Castelli V, Benedetti E, d'Angelo M, Cimini A. Mar Drugs 19 24 (2021)
  49. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease. Annadurai N, Agrawal K, Džubák P, Hajdúch M, Das V. Cell Mol Life Sci 74 4159-4169 (2017)
  50. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Alam J, Sharma L. Curr Drug Targets 20 316-339 (2019)
  51. Amyloid beta modulators and neuroprotection in Alzheimer's disease: a critical appraisal. Kuruva CS, Reddy PH. Drug Discov Today 22 223-233 (2017)
  52. Marine Natural Products from New Caledonia--A Review. Motuhi SE, Mehiri M, Payri CE, La Barre S, Bach S. Mar Drugs 14 E58 (2016)
  53. Current strategies for the treatment of Alzheimer's disease and other tauopathies. Dickey CA, Petrucelli L. Expert Opin Ther Targets 10 665-676 (2006)
  54. Marine Sponges and Bacteria as Challenging Sources of Enzyme Inhibitors for Pharmacological Applications. Ruocco N, Costantini S, Palumbo F, Costantini M. Mar Drugs 15 E173 (2017)
  55. Molecular Targets of Active Anticancer Compounds Derived from Marine Sources. Song X, Xiong Y, Qi X, Tang W, Dai J, Gu Q, Li J. Mar Drugs 16 E175 (2018)
  56. Sponges: A Reservoir of Genes Implicated in Human Cancer. Ćetković H, Halasz M, Herak Bosnar M. Mar Drugs 16 E20 (2018)
  57. Axonal Transport and Neurodegeneration: How Marine Drugs Can Be Used for the Development of Therapeutics. White JA, Banerjee R, Gunawardena S. Mar Drugs 14 E102 (2016)
  58. Electrophilic Aminating Agents in Total Synthesis. O'Neil LG, Bower JF. Angew Chem Int Ed Engl 60 25640-25666 (2021)
  59. Marine-Derived Compounds with Anti-Alzheimer's Disease Activities. Hafez Ghoran S, Kijjoa A. Mar Drugs 19 410 (2021)
  60. Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Shahin R, Shaheen O, El-Dahiyat F, Habash M, Saffour S. Future Sci OA 3 FSO204 (2017)
  61. Post-translational modifications of CDK5 and their biological roles in cancer. Gao GB, Sun Y, Fang RD, Wang Y, Wang Y, He QY. Mol Biomed 2 22 (2021)
  62. Secondary metabolites from marine sponges of the genus Agelas: a comprehensive update insight on structural diversity and bioactivity. Chu MJ, Li M, Ma H, Li PL, Li GQ. RSC Adv 12 7789-7820 (2022)
  63. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Cells 10 3255 (2021)
  64. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Lima E, Medeiros J. Mar Drugs 20 75 (2022)
  65. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Vrabec R, Blunden G, Cahlíková L. Int J Mol Sci 24 4399 (2023)
  66. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Baier A, Szyszka R. Front Mol Biosci 9 916063 (2022)
  67. Metabolities from Marine Sponges of the Genus Callyspongia: Occurrence, Biological Activity, and NMR Data. de Sousa LHN, de Araújo RD, Sousa-Fontoura D, Menezes FG, Araújo RM. Mar Drugs 19 663 (2021)
  68. NMR of Natural Products as Potential Drugs. Hansen PE. Molecules 26 3763 (2021)
  69. [Screening marine resources to find novel chemical inhibitors of disease-relevant protein kinases]. Baratte B, Serive B, Bach S. Med Sci (Paris) 31 538-545 (2015)

Articles citing this publication (115)

  1. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. J Biol Chem 276 251-260 (2001)
  2. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R, Gray M, Crescenzi E, Martin MC, Brady HJ, Savill JS, Dransfield I, Haslett C. Nat Med 12 1056-1064 (2006)
  3. Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, Gussio R, Senderowicz AM, Sausville EA, Kunick C, Meijer L. Eur J Biochem 267 5983-5994 (2000)
  4. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN, Abagyan RA. J Mol Biol 337 209-225 (2004)
  5. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Eldar-Finkelman H, Martinez A. Front Mol Neurosci 4 32 (2011)
  6. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Biernat J, Wu YZ, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L, Mandelkow EM. Mol Biol Cell 13 4013-4028 (2002)
  7. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le Roch K, Doerig C, Schultz P, Meijer L. Chem Biol 7 411-422 (2000)
  8. GSK-3β: A Bifunctional Role in Cell Death Pathways. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. Int J Cell Biol 2012 930710 (2012)
  9. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer's mice. Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath BS, Boudreau RL, Davidson B, Laferla F, Gallego-Gómez JC, Kosik KS, Cardona-Gómez GP. J Neurosci 30 13966-13976 (2010)
  10. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, Garrett MD, Mittnacht S, Pearl LH. EMBO J 25 3179-3190 (2006)
  11. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J. Mar Drugs 13 202-221 (2015)
  12. 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T. Bioorg Med Chem Lett 14 413-416 (2004)
  13. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Levinson NM, Boxer SG. Nat Chem Biol 10 127-132 (2014)
  14. Intracellular Targets of Paullones. Identification following affinity purification on immobilized inhibitor. Knockaert M, Wieking K, Schmitt S, Leost M, Grant KM, Mottram JC, Kunick C, Meijer L. J Biol Chem 277 25493-25501 (2002)
  15. Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. Dorin D, Le Roch K, Sallicandro P, Alano P, Parzy D, Poullet P, Meijer L, Doerig C. Eur J Biochem 268 2600-2608 (2001)
  16. Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME. Structure 9 389-397 (2001)
  17. The COP9 signalosome mediates beta-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. Huang X, Langelotz C, Hetfeld-Pechoc BK, Schwenk W, Dubiel W. J Mol Biol 391 691-702 (2009)
  18. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Bullock AN, Das S, Debreczeni JE, Rellos P, Fedorov O, Niesen FH, Guo K, Papagrigoriou E, Amos AL, Cho S, Turk BE, Ghosh G, Knapp S. Structure 17 352-362 (2009)
  19. Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. Curman D, Cinel B, Williams DE, Rundle N, Block WD, Goodarzi AA, Hutchins JR, Clarke PR, Zhou BB, Lees-Miller SP, Andersen RJ, Roberge M. J Biol Chem 276 17914-17919 (2001)
  20. High-throughput kinase profiling: a more efficient approach toward the discovery of new kinase inhibitors. Miduturu CV, Deng X, Kwiatkowski N, Yang W, Brault L, Filippakopoulos P, Chung E, Yang Q, Schwaller J, Knapp S, King RW, Lee JD, Herrgard S, Zarrinkar P, Gray NS. Chem Biol 18 868-879 (2011)
  21. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson's disease. Kozikowski AP, Gaisina IN, Petukhov PA, Sridhar J, King LT, Blond SY, Duka T, Rusnak M, Sidhu A. ChemMedChem 1 256-266 (2006)
  22. Palladium-catalyzed dynamic kinetic asymmetric transformations of vinyl aziridines with nitrogen heterocycles: rapid access to biologically active pyrroles and indoles. Trost BM, Osipov M, Dong G. J Am Chem Soc 132 15800-15807 (2010)
  23. Synthesis and target identification of hymenialdisine analogs. Wan Y, Hur W, Cho CY, Liu Y, Adrian FJ, Lozach O, Bach S, Mayer T, Fabbro D, Meijer L, Gray NS. Chem Biol 11 247-259 (2004)
  24. Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Kramer T, Schmidt B, Lo Monte F. Int J Alzheimers Dis 2012 381029 (2012)
  25. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop. Wu SY, McNae I, Kontopidis G, McClue SJ, McInnes C, Stewart KJ, Wang S, Zheleva DI, Marriage H, Lane DP, Taylor P, Fischer PM, Walkinshaw MD. Structure 11 399-410 (2003)
  26. Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. Ahn JS, Radhakrishnan ML, Mapelli M, Choi S, Tidor B, Cuny GD, Musacchio A, Yeh LA, Kosik KS. Chem Biol 12 811-823 (2005)
  27. Total synthesis of all (-)-Agelastatin alkaloids. Movassaghi M, Siegel DS, Han S. Chem Sci 1 561-566 (2010)
  28. Purification of CK1 by affinity chromatography on immobilised axin. Reinhardt J, Ferandin Y, Meijer L. Protein Expr Purif 54 101-109 (2007)
  29. A Biacore biosensor method for detailed kinetic binding analysis of small molecule inhibitors of p38alpha mitogen-activated protein kinase. Casper D, Bukhtiyarova M, Springman EB. Anal Biochem 325 126-136 (2004)
  30. Phosphorylation of the beta-amyloid precursor protein at the cell surface by ectocasein kinases 1 and 2. Walter J, Schindzielorz A, Hartung B, Haass C. J Biol Chem 275 23523-23529 (2000)
  31. A stereoselective synthesis of the bromopyrrole natural product (-)-agelastatin A. Wehn PM, Du Bois J. Angew Chem Int Ed Engl 48 3802-3805 (2009)
  32. Novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella verrucosa. Aiello A, D'Esposito M, Fattorusso E, Menna M, Müller WE, Perović-Ottstadt S, Schröder HC. Bioorg Med Chem 14 17-24 (2006)
  33. Polyhalogenobenzimidazoles: synthesis and their inhibitory activity against casein kinases. Andrzejewska M, Pagano MA, Meggio F, Brunati AM, Kazimierczuk Z. Bioorg Med Chem 11 3997-4002 (2003)
  34. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. Arfeen M, Patel R, Khan T, Bharatam PV. J Biomol Struct Dyn 33 2578-2593 (2015)
  35. Scaffold hopping and optimization towards libraries of glycogen synthase kinase-3 inhibitors. Naerum L, Nørskov-Lauritsen L, Olesen PH. Bioorg Med Chem Lett 12 1525-1528 (2002)
  36. Sensitization of tumor cells toward chemotherapy: enhancing the efficacy of camptothecin with imidazolines. Sharma V, Lansdell TA, Peddibhotla S, Tepe JJ. Chem Biol 11 1689-1699 (2004)
  37. Bioinspired total synthesis of agelastatin A. Reyes JC, Romo D. Angew Chem Int Ed Engl 51 6870-6873 (2012)
  38. Characterization of two T. gondii CK1 isoforms. Donald RG, Zhong T, Meijer L, Liberator PA. Mol Biochem Parasitol 141 15-27 (2005)
  39. Effect of electrostatic polarization and bridging water on CDK2-ligand binding affinities calculated using a highly efficient interaction entropy method. Duan L, Feng G, Feng G, Wang X, Wang L, Zhang Q. Phys Chem Chem Phys 19 10140-10152 (2017)
  40. Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A. McClary B, Zinshteyn B, Meyer M, Jouanneau M, Pellegrino S, Yusupova G, Schuller A, Reyes JCP, Lu J, Guo Z, Ayinde S, Luo C, Dang Y, Romo D, Yusupov M, Green R, Liu JO. Cell Chem Biol 24 605-613.e5 (2017)
  41. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1409-1425 (2008)
  42. Total synthesis of (+/-)-agelastatin A, a potent inhibitor of osteopontin-mediated neoplastic transformations. Dickson DP, Wardrop DJ. Org Lett 11 1341-1344 (2009)
  43. Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. Timm T, von Kries JP, Li X, Zempel H, Mandelkow E, Mandelkow EM. J Biol Chem 286 41711-41722 (2011)
  44. Potent inhibition of checkpoint kinase activity by a hymenialdisine-derived indoloazepine. Sharma V, Tepe JJ. Bioorg Med Chem Lett 14 4319-4321 (2004)
  45. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3. Ojo KK, Arakaki TL, Napuli AJ, Inampudi KK, Keyloun KR, Zhang L, Hol WG, Verlinde CL, Merritt EA, Van Voorhis WC. Mol Biochem Parasitol 176 98-108 (2011)
  46. Synthesis and anticancer activity of all known (-)-agelastatin alkaloids. Han S, Siegel DS, Morrison KC, Hergenrother PJ, Movassaghi M. J Org Chem 78 11970-11984 (2013)
  47. Molecular models of cyclin-dependent kinase 1 complexed with inhibitors. Canduri F, Uchoa HB, de Azevedo WF. Biochem Biophys Res Commun 324 661-666 (2004)
  48. The marine natural-derived inhibitors of glycogen synthase kinase-3beta phenylmethylene hydantoins: In vitro and in vivo activities and pharmacophore modeling. Khanfar MA, Khanfar MA, Asal BA, Mudit M, Kaddoumi A, El Sayed KA. Bioorg Med Chem 17 6032-6039 (2009)
  49. 3D-QSAR CoMFA study on indenopyrazole derivatives as cyclin dependent kinase 4 (CDK4) and cyclin dependent kinase 2 (CDK2) inhibitors. Singh SK, Dessalew N, Bharatam PV. Eur J Med Chem 41 1310-1319 (2006)
  50. Structure-aided optimization of kinase inhibitors derived from alsterpaullone. Kunick C, Zeng Z, Gussio R, Zaharevitz D, Leost M, Totzke F, Schächtele C, Kubbutat MH, Meijer L, Lemcke T. Chembiochem 6 541-549 (2005)
  51. 3D-QSAR and molecular docking studies on pyrazolopyrimidine derivatives as glycogen synthase kinase-3beta inhibitors. Dessalew N, Patel DS, Bharatam PV. J Mol Graph Model 25 885-895 (2007)
  52. A short total synthesis of the marine sponge pyrrole-2-aminoimidazole alkaloid (±)-agelastatin A. Duspara PA, Batey RA. Angew Chem Int Ed Engl 52 10862-10866 (2013)
  53. Aryl[a]pyrrolo[3,4-c]carbazoles as selective cyclin D1-CDK4 inhibitors. Sanchez-Martinez C, Shih C, Faul MM, Zhu G, Paal M, Somoza C, Li T, Kumrich CA, Winneroski LL, Xun Z, Brooks HB, Patel BK, Schultz RM, DeHahn TB, Spencer CD, Watkins SA, Considine E, Dempsey JA, Ogg CA, Campbell RM, Anderson BA, Wagner J. Bioorg Med Chem Lett 13 3835-3839 (2003)
  54. Bioactive marine drugs and marine biomaterials for brain diseases. Grosso C, Valentão P, Ferreres F, Andrade PB. Mar Drugs 12 2539-2589 (2014)
  55. Progress toward virtual screening for drug side effects. Rockey WM, Elcock AH. Proteins 48 664-671 (2002)
  56. Structure-based design of a new class of highly selective aminoimidazo[1,2-a]pyridine-based inhibitors of cyclin dependent kinases. Hamdouchi C, Zhong B, Mendoza J, Collins E, Jaramillo C, De Diego JE, Robertson D, Spencer CD, Anderson BD, Watkins SA, Zhang F, Brooks HB. Bioorg Med Chem Lett 15 1943-1947 (2005)
  57. A novel indirubin derivative PHII-7 potentiates adriamycin cytotoxicity via inhibiting P-glycoprotein expression in human breast cancer MCF-7/ADR cells. Shi R, Li W, Zhang X, Zhang Y, Peng H, Xie Y, Fan D, Liu R, Liu X, Xiong D. Eur J Pharmacol 669 38-44 (2011)
  58. A stereodivergent strategy to both product enantiomers from the same enantiomer of a stereoinducing catalyst: agelastatin A. Trost BM, Dong G. Chemistry 15 6910-6919 (2009)
  59. Potent fluorinated agelastatin analogues for chronic lymphocytic leukemia: design, synthesis, and pharmacokinetic studies. Stout EP, Choi MY, Castro JE, Molinski TF. J Med Chem 57 5085-5093 (2014)
  60. Identification of High-Affinity Inhibitors of Cyclin-Dependent Kinase 2 Towards Anticancer Therapy. Mohammad T, Batra S, Dahiya R, Baig MH, Rather IA, Dong JJ, Hassan I. Molecules 24 E4589 (2019)
  61. Kinase inhibitor scaffolds against neurodegenerative diseases from a Southern Australian ascidian, Didemnum sp. Plisson F, Conte M, Khalil Z, Huang XC, Piggott AM, Capon RJ. ChemMedChem 7 983-990 (2012)
  62. Platinum-catalyzed intramolecular cyclizations of alkynes: efficient synthesis of pyrroloazepinone derivatives. Gruit M, Michalik D, Tillack A, Beller M. Angew Chem Int Ed Engl 48 7212-7216 (2009)
  63. Structure-activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Laha JK, Zhang X, Qiao L, Liu M, Chatterjee S, Robinson S, Kosik KS, Cuny GD. Bioorg Med Chem Lett 21 2098-2101 (2011)
  64. Synthesis of quinolinyl/isoquinolinyl[a]pyrrolo [3,4-c] carbazoles as cyclin D1/CDK4 inhibitors. Zhu G, Conner S, Zhou X, Shih C, Brooks HB, Considine E, Dempsey JA, Ogg C, Patel B, Schultz RM, Spencer CD, Teicher B, Watkins SA. Bioorg Med Chem Lett 13 1231-1235 (2003)
  65. Identifying in vivo targets of cyclin-dependent kinase inhibitors by affinity chromatography. Knockaert M, Meijer L. Biochem Pharmacol 64 819-825 (2002)
  66. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1). O'Rourke A, Kremb S, Bader TM, Helfer M, Schmitt-Kopplin P, Gerwick WH, Brack-Werner R, Voolstra CR. Mar Drugs 14 E28 (2016)
  67. Marine bioactives and potential application in sports. Gammone MA, Gemello E, Riccioni G, D'Orazio N. Mar Drugs 12 2357-2382 (2014)
  68. Phosphorylation of calsenilin at Ser63 regulates its cleavage by caspase-3. Choi EK, Miller JS, Zaidi NF, Salih E, Buxbaum JD, Wasco W. Mol Cell Neurosci 23 495-506 (2003)
  69. Structural features underlying selective inhibition of GSK3β by dibromocantharelline: implications for rational drug design. Zhang N, Zhong R, Yan H, Jiang Y. Chem Biol Drug Des 77 199-205 (2011)
  70. 4-Acylamino-6-arylfuro[2,3-d]pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Maeda Y, Nakano M, Sato H, Miyazaki Y, Schweiker SL, Smith JL, Truesdale AT. Bioorg Med Chem Lett 14 3907-3911 (2004)
  71. Design, synthesis, and molecular modelling of pyridazinone and phthalazinone derivatives as protein kinases inhibitors. Elagawany M, Ibrahim MA, Ali Ahmed HE, El-Etrawy ASh, Ghiaty A, Abdel-Samii ZK, El-Feky SA, Bajorath J. Bioorg Med Chem Lett 23 2007-2013 (2013)
  72. K313, a novel benzoxazole derivative, exhibits anti-inflammatory properties via inhibiting GSK3β activity in LPS-induced RAW264.7 macrophages. Zhao BB, Guo HJ, Liu Y, Luo XY, Yang SX, Wang YT, Leng X, Mo CF, Zou Q. J Cell Biochem 119 5382-5390 (2018)
  73. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora. Shrestha S, Natarajan S, Park JH, Lee DY, Cho JG, Kim GS, Jeon YJ, Yeon SW, Yang DC, Baek NI. Bioorg Med Chem Lett 23 5150-5154 (2013)
  74. Aminoimidazo[1,2-a]pyridines as a new structural class of cyclin-dependent kinase inhibitors. Part 1: Design, synthesis, and biological evaluation. Jaramillo C, de Diego JE, Hamdouchi C, Collins E, Keyser H, Sánchez-Martínez C, del Prado M, Norman B, Brooks HB, Watkins SA, Spencer CD, Dempsey JA, Anderson BD, Campbell RM, Leggett T, Patel B, Schultz RM, Espinosa J, Vieth M, Zhang F, Timm DE. Bioorg Med Chem Lett 14 6095-6099 (2004)
  75. Coupling structure-based design with combinatorial chemistry: application of active site derived pharmacophores with informative library design. Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PD, Blaney JM. J Mol Graph Model 20 469-477 (2002)
  76. New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies. Patel DS, Bharatam PV. J Comput Aided Mol Des 20 55-66 (2006)
  77. Synthesis and CHK1 inhibitory potency of Hymenialdisine analogues. Parmentier JG, Portevin B, Golsteyn RM, Pierré A, Hickman J, Gloanec P, De Nanteuil G. Bioorg Med Chem Lett 19 841-844 (2009)
  78. 6-(4-Pyridyl)pyrimidin-4(3H)-ones as CNS penetrant glycogen synthase kinase-3β inhibitors. Uehara F, Shoda A, Aritomo K, Fukunaga K, Watanabe K, Ando R, Shinoda M, Ueno H, Kubodera H, Sunada S, Saito K, Kaji T, Asano S, Eguchi J, Yuki S, Tanaka S, Yoneyama Y, Niwa T. Bioorg Med Chem Lett 23 6928-6932 (2013)
  79. Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri. Hamed ANE, Schmitz R, Bergermann A, Totzke F, Kubbutat M, Müller WEG, Youssef DTA, Bishr MM, Kamel MS, Edrada-Ebel R, Wätjen W, Proksch P. Z Naturforsch C J Biosci 73 199-210 (2018)
  80. Identification of potential glycogen kinase-3 inhibitors by structure based virtual screening. Dessalew N, Bharatam PV. Biophys Chem 128 165-175 (2007)
  81. Synthesis and evaluation of debromohymenialdisine-derived Chk2 inhibitors. Saleem RS, Lansdell TA, Tepe JJ. Bioorg Med Chem 20 1475-1481 (2012)
  82. An efficient approach to dispacamide A and its derivatives. Guihéneuf S, Paquin L, Carreaux F, Durieu E, Meijer L, Bazureau JP. Org Biomol Chem 10 978-987 (2012)
  83. Cellular localization of debromohymenialdisine and hymenialdisine in the marine sponge Axinella sp. using a newly developed cell purification protocol. Song YF, Qu Y, Cao XP, Zhang W. Mar Biotechnol (NY) 13 868-882 (2011)
  84. Derivatization of agelastatin A leading to bioactive analogs and a trifunctional probe. Jouanneau M, McClary B, Reyes JC, Chen R, Chen Y, Plunkett W, Cheng X, Milinichik AZ, Albone EF, Liu JO, Romo D. Bioorg Med Chem Lett 26 2092-2097 (2016)
  85. Characterization of novel checkpoint kinase 1 inhibitors by in vitro assays and in human cancer cells treated with topoisomerase inhibitors. Ferry G, Studeny A, Bossard C, Kubara PM, Zeyer D, Renaud JP, Casara P, de Nanteuil G, Wierzbicki M, Pfeiffer B, Prudhomme M, Leonce S, Pierré A, Boutin JA, Golsteyn RM. Life Sci 89 259-268 (2011)
  86. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening. Dessalew N, Bharatam PV. Chem Biol Drug Des 68 154-165 (2006)
  87. Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. Nilmeier J, Jacobson M. J Chem Theory Comput 4 835-846 (2008)
  88. Structural modeling of GSK3β implicates the inactive (DFG-out) conformation as the target bound by TDZD analogs. Balasubramaniam M, Mainali N, Bowroju SK, Atluri P, Penthala NR, Ayyadevera S, Crooks PA, Shmookler Reis RJ. Sci Rep 10 18326 (2020)
  89. Structure-guided design of a highly selective glycogen synthase kinase-3β inhibitor: a superior neuroprotective pyrazolone showing antimania effects. Chen W, Gaisina IN, Gunosewoyo H, Malekiani SA, Hanania T, Kozikowski AP. ChemMedChem 6 1587-1592 (2011)
  90. Letter 3D-QSAR and molecular docking studies on 3-anilino-4-arylmaleimide derivatives as glycogen synthase kinase-3β inhibitors. Akhtar M, Bharatam PV. Chem Biol Drug Des 79 560-571 (2012)
  91. Efficient and simple zinc-mediated synthesis of 3-amidoindoles. Pews-Davtyan A, Beller M. Org Biomol Chem 9 6331-6334 (2011)
  92. Pharmacophore Modeling, Ensemble Docking, Virtual Screening, and Biological Evaluation on Glycogen Synthase Kinase-3β. Fu G, Sivaprakasam P, Dale OR, Manly SP, Cutler SJ, Doerksen RJ. Mol Inform 33 610-626 (2014)
  93. Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. El Kerdawy AM, Osman AA, Zaater MA. J Mol Model 25 171 (2019)
  94. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Houzé S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L. Molecules 19 15237-15257 (2014)
  95. Solution-phase synthesis of a tricyclic pyrrole-2-carboxamide discovery library applying a stetter-Paal-Knorr reaction sequence. Werner S, Iyer PS, Fodor MD, Coleman CM, Twining LA, Mitasev B, Brummond KM. J Comb Chem 8 368-380 (2006)
  96. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Hulcová D, Breiterová K, Siatka T, Klímová K, Davani L, Šafratová M, Hošťálková A, De Simone A, Andrisano V, Cahlíková L. Molecules 23 E719 (2018)
  97. Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents. Keenan SM, Welsh WJ. J Mol Graph Model 22 241-247 (2004)
  98. Pharmacological Treatment of Alzheimer's Disease: Is it Progressing Adequately? Robles A. Open Neurol J 3 27-44 (2009)
  99. Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Crisan L, Avram S, Pacureanu L. Mol Divers 21 385-405 (2017)
  100. Synthesis and Evaluation of Agelastatin Derivatives as Potent Modulators for Cancer Invasion and Metastasis. Antropow AH, Xu K, Buchsbaum RJ, Movassaghi M. J Org Chem 82 7720-7731 (2017)
  101. Tetrahydropyrrolo[3,2-c]azepin-4-ones as a new class of cytotoxic compounds. Martínez R, Avila JG, Ramírez MT, Pérez A, Martínez A. Bioorg Med Chem 14 4007-4016 (2006)
  102. Synthesis and cytotoxic activity of new azepino[3',4':4,5]pyrrolo[2,1-a]isoquinolin-12-ones. Martínez R, Arzate MM, Ramírez-Apan MT. Bioorg Med Chem 17 1849-1856 (2009)
  103. Comparative analysis of the surface interaction properties of the binding sites of CDK2, CDK4, and ERK2. Kelly MD, Mancera RL. ChemMedChem 1 366-375 (2006)
  104. Design and Microwave Synthesis of New (5Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5Z) 2-Amino-5-arylidene-1,3-thiazol-4(5H)-one as New Inhibitors of Protein Kinase DYRK1A. Bourahla K, Guihéneuf S, Limanton E, Paquin L, Le Guével R, Charlier T, Rahmouni M, Durieu E, Lozach O, Carreaux F, Meijer L, Bazureau JP. Pharmaceuticals (Basel) 14 1086 (2021)
  105. Identifying the binding mode of a molecular scaffold. Chema D, Eren D, Yayon A, Goldblum A, Zaliani A. J Comput Aided Mol Des 18 23-40 (2004)
  106. Protein kinase affinity reagents based on a 5-aminoindazole scaffold. Krishnamurty R, Brock AM, Maly DJ. Bioorg Med Chem Lett 21 550-554 (2011)
  107. Revisiting the Proposition of Binding Pockets and Bioactive Poses for GSK-3β Allosteric Modulators Addressed to Neurodegenerative Diseases. Silva GM, Borges RS, Santos KLB, Federico LB, Francischini IAG, Gomes SQ, Barcelos MP, Silva RC, Santos CBR, Silva CHTP. Int J Mol Sci 22 8252 (2021)
  108. Stimulators of translation identified during a small molecule screening campaign. Shin U, Williams DE, Kozakov D, Hall DR, Beglov D, Vajda S, Andersen RJ, Pelletier J. Anal Biochem 447 6-14 (2014)
  109. Total synthesis of (-)-agelastatin A: an SH2' radical azidation strategy. Tsuchimochi I, Kitamura Y, Aoyama H, Akai S, Nakai K, Yoshimitsu T. Chem Commun (Camb) 54 9893-9896 (2018)
  110. Hymenialdisine is Cytotoxic Against Cisplatin-Sensitive but Not Against Cisplatin-Resistant Cell Lines. Abdullah N, Al Balushi N, Hasan SI, Al Bahlani S, Dobretsov S, Tamimi Y, Burney IA. Sultan Qaboos Univ Med J 21 632-634 (2021)
  111. Synthesis of Agelastatin A and Derivatives Premised on a Hidden Symmetry Element Leading to Analogs Displaying Anticancer Activity. Xue H, Svatek H, Bertonha AF, Reisenauer K, Robinson J, Kim M, Ingros A, Ho M, Taube J, Romo D. Tetrahedron 94 132340 (2021)
  112. Unprecedented nucleophile-promoted 1,7-S or Se shift reactions under Pummerer reaction conditions of 4-alkenyl-3-sulfinylmethylpyrroles. Go T, Morimatsu A, Wasada H, Tanabe G, Muraoka O, Sawada Y, Yoshimatsu M. Beilstein J Org Chem 14 2722-2729 (2018)
  113. Daphnetin methylation stabilizes the activity of phosphoribulokinase in wheat during cold acclimation. Kane K, Moheb A, Fukushi Y, Roy R, Hüner NP, Ibrahim RK, Sarhan F. Biochem Cell Biol 90 657-666 (2012)
  114. Identification of CLK1 Inhibitors by a Fragment-linking Based Virtual Screening. Walter A, Chaikuad A, Loaëc N, Preu L, Knapp S, Meijer L, Kunick C, Koch O. Mol Inform 36 (2017)
  115. Novel (2-amino-4-arylimidazolyl)propanoic acids and pyrrolo[1,2-c]imidazoles via the domino reactions of 2-amino-4-arylimidazoles with carbonyl and methylene active compounds. Lipson VV, Pavlovska TL, Svetlichnaya NV, Poryvai AA, Gorobets NY, Van der Eycken EV, Konovalova IS, Shiskina SV, Borisov AV, Musatov VI, Mazepa AV. Beilstein J Org Chem 15 1032-1045 (2019)


Related citations provided by authors (4)

  1. Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors. Gray NS, Wodicka L, Thunnissen AMWH, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, Leclerc S, Meijer L, Kim S-H, Lockhart DJ, Schultz PG Science 281 533- (1998)
  2. Inhibition of Cyclin-Dependent Kinases by Purine Analogues-Crystal Structure of Human Cdk2 Complexed with Roscovitine. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim S-H Eur. J. Biochem. 243 518- (1997)
  3. Multiple Modes of Ligand Recognition: Crystal Structures of Cyclin-Dependent Protein Kinase 2 in Complex with ATP and Two Inhibitors, Olomoucine and Isopentenyladenine. Schultze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim S-H Proteins 22 378- (1995)
  4. Crystal Structure of Cyclin-Dependent Kinase 2. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim S-H Nature 363 595- (1993)