1a7f Citations

A structural switch in a mutant insulin exposes key residues for receptor binding.

J Mol Biol 279 1-7 (1998)
Cited: 58 times
EuropePMC logo PMID: 9636695

Abstract

Despite years of effort to clarify the structural basis of insulin receptor binding no clear consensus has emerged. It is generally believed that insulin receptor binding is accompanied by some degree of conformational change in the carboxy-terminal of the insulin B-chain. In particular, while most substitutions for PheB24 lead to inactive species, glycine or D-amino acids are well tolerated in this position. Here we assess the conformation change by solving the solution structure of the biologically active (GluB16, GlyB24, desB30)-insulin mutant. The structure in aqueous solution at pH 8 reveals a subtle, albeit well-defined rearrangement of the C-terminal decapeptide involving a perturbation of the B20-23 turn, which allows the PheB25 residue to occupy the position normally taken up by PheB24 in native insulin. The new protein surface exposed rationalizes the receptor binding properties of a series of insulin analogs. We suggest that the structural switch is forced by the structure of the underlying core of species invariant residues and that an analogous rearrangement of the C-terminal of the B-chain occurs in native insulin on binding to its receptor.

Articles - 1a7f mentioned but not cited (4)



Reviews citing this publication (15)

  1. Structural biology of insulin and IGF1 receptors: implications for drug design. De Meyts P, Whittaker J. Nat Rev Drug Discov 1 769-783 (2002)
  2. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Fu Z, Gilbert ER, Liu D. Curr Diabetes Rev 9 25-53 (2013)
  3. Insulin and its receptor: structure, function and evolution. De Meyts P. Bioessays 26 1351-1362 (2004)
  4. Insulin receptor structure and its implications for the IGF-1 receptor. Lawrence MC, McKern NM, Ward CW. Curr Opin Struct Biol 17 699-705 (2007)
  5. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Ward CW, Lawrence MC, Streltsov VA, Adams TE, McKern NM. Trends Biochem Sci 32 129-137 (2007)
  6. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Ward CW, Lawrence MC. Bioessays 31 422-434 (2009)
  7. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Ward CW, Menting JG, Lawrence MC. Bioessays 35 945-54, doi/10.1002/bies.201370111 (2013)
  8. Structural insights into ligand-induced activation of the insulin receptor. Ward C, Lawrence M, Streltsov V, Garrett T, McKern N, Lou MZ, Lovrecz G, Adams T. Acta Physiol (Oxf) 192 3-9 (2008)
  9. Expression of insulin in yeast: the importance of molecular adaptation for secretion and conversion. Kjeldsen T, Balschmidt P, Diers I, Hach M, Kaarsholm NC, Ludvigsen S. Biotechnol Genet Eng Rev 18 89-121 (2001)
  10. Structural principles of insulin formulation and analog design: A century of innovation. Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Mol Metab 52 101325 (2021)
  11. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond. Vinther TN, Kjeldsen TB, Jensen KJ, Hubálek F. J Pept Sci 21 797-806 (2015)
  12. Insulin: a model system for nanomedicine? Koch M, Schmid FF, Zoete V, Meuwly M. Nanomedicine (Lond) 1 373-378 (2006)
  13. Derivatization with fatty acids in peptide and protein drug discovery. Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Nat Rev Drug Discov 22 59-80 (2023)
  14. Effects of localized interactions and surface properties on stability of protein-based therapeutics. Mills BJ, Laurence Chadwick JS. J Pharm Pharmacol 70 609-624 (2018)
  15. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. J Clin Endocrinol Metab 107 909-928 (2022)

Articles citing this publication (39)

  1. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity. Lou M, Garrett TP, McKern NM, Hoyne PA, Epa VC, Bentley JD, Lovrecz GO, Cosgrove LJ, Frenkel MJ, Ward CW. Proc Natl Acad Sci U S A 103 12429-12434 (2006)
  2. Protective hinge in insulin opens to enable its receptor engagement. Menting JG, Yang Y, Chan SJ, Phillips NB, Smith BJ, Whittaker J, Wickramasinghe NP, Whittaker LJ, Pandyarajan V, Wan ZL, Yadav SP, Carroll JM, Strokes N, Roberts CT, Ismail-Beigi F, Milewski W, Steiner DF, Chauhan VS, Ward CW, Weiss MA, Lawrence MC. Proc Natl Acad Sci U S A 111 E3395-404 (2014)
  3. How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor. Huang K, Xu B, Hu SQ, Chu YC, Hua QX, Qu Y, Li B, Wang S, Wang RY, Nakagawa SH, Theede AM, Whittaker J, De Meyts P, Katsoyannis PG, Weiss MA. J Mol Biol 341 529-550 (2004)
  4. Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. van den Bogaart G, Krasnikov V, Poolman B. Biophys J 92 1233-1240 (2007)
  5. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Nakagawa SH, Zhao M, Hua QX, Hu SQ, Wan ZL, Jia W, Weiss MA. Biochemistry 44 4984-4999 (2005)
  6. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. De Meyts P. Bioessays 37 389-397 (2015)
  7. A comparison of the dynamic behavior of monomeric and dimeric insulin shows structural rearrangements in the active monomer. Zoete V, Meuwly M, Karplus M. J Mol Biol 342 913-929 (2004)
  8. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. Hua QX, Nakagawa SH, Jia W, Huang K, Phillips NB, Hu SQ, Weiss MA. J Biol Chem 283 14703-14716 (2008)
  9. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Jirácek J, Záková L, Antolíková E, Watson CJ, Turkenburg JP, Dodson GG, Brzozowski AM. Proc Natl Acad Sci U S A 107 1966-1970 (2010)
  10. Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain. Hua QX, Nakagawa S, Hu SQ, Jia W, Wang S, Weiss MA. J Biol Chem 281 24900-24909 (2006)
  11. A cysteine probe with high selectivity and sensitivity promoted by response-assisted electrostatic attraction. Zhou X, Jin X, Sun G, Li D, Wu X. Chem Commun (Camb) 48 8793-8795 (2012)
  12. Chiral mutagenesis of insulin's hidden receptor-binding surface: structure of an allo-isoleucine(A2) analogue. Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA. J Mol Biol 316 435-441 (2002)
  13. Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer. Zoete V, Meuwly M. J Comput Chem 27 1843-1857 (2006)
  14. A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information. Rentería ME, Gandhi NS, Vinuesa P, Helmerhorst E, Mancera RL. PLoS One 3 e3667 (2008)
  15. Chiral mutagenesis of insulin. Contribution of the B20-B23 beta-turn to activity and stability. Nakagawa SH, Hua QX, Hu SQ, Jia W, Wang S, Katsoyannis PG, Weiss MA. J Biol Chem 281 22386-22396 (2006)
  16. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. J Biol Chem 284 14586-14596 (2009)
  17. Protein flexibility: multiple molecular dynamics simulations of insulin chain B. Legge FS, Budi A, Treutlein H, Yarovsky I. Biophys Chem 119 146-157 (2006)
  18. Structural integrity of the B24 site in human insulin is important for hormone functionality. Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. J Biol Chem 288 10230-10240 (2013)
  19. The relationship between insulin bioactivity and structure in the NH2-terminal A-chain helix. Olsen HB, Ludvigsen S, Kaarsholm NC. J Mol Biol 284 477-488 (1998)
  20. Investigation of glucose binding sites on insulin. Zoete V, Meuwly M, Karplus M. Proteins 55 568-581 (2004)
  21. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element. Vashisth H, Abrams CF. Proteins 81 1017-1030 (2013)
  22. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. J Biol Chem 289 34709-34727 (2014)
  23. Diabetes-associated mutations in insulin identify invariant receptor contacts. Xu B, Hu SQ, Chu YC, Wang S, Wang RY, Nakagawa SH, Katsoyannis PG, Weiss MA. Diabetes 53 1599-1602 (2004)
  24. Landmarks in insulin research. Ward CW, Lawrence MC. Front Endocrinol (Lausanne) 2 76 (2011)
  25. Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. Antolíková E, Žáková L, Turkenburg JP, Watson CJ, Hančlová I, Šanda M, Cooper A, Kraus T, Brzozowski AM, Jiráček J. J Biol Chem 286 36968-36977 (2011)
  26. Replacement of the CysA7-CysB7 disulfide bond with a 1,2,3-triazole linker causes unfolding in insulin glargine. Williams GM, Lee K, Li X, Cooper GJ, Brimble MA. Org Biomol Chem 13 4059-4063 (2015)
  27. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization. Vinther TN, Norrman M, Strauss HM, Huus K, Schlein M, Pedersen TÅ, Kjeldsen T, Jensen KJ, Hubálek F. PLoS One 7 e30882 (2012)
  28. Effect of external stresses on protein conformation: a computer modelling study. Budi A, Legge S, Treutlein H, Yarovsky I. Eur Biophys J 33 121-129 (2004)
  29. Ligand-induced conformational change in the minimized insulin receptor. Schlein M, Havelund S, Kristensen C, Dunn MF, Kaarsholm NC. J Mol Biol 303 161-169 (2000)
  30. Non-standard insulin design: structure-activity relationships at the periphery of the insulin receptor. Weiss MA, Wan Z, Zhao M, Chu YC, Nakagawa SH, Burke GT, Jia W, Hellmich R, Katsoyannis PG. J Mol Biol 315 103-111 (2002)
  31. Engineering of insulin receptor isoform-selective insulin analogues. Glendorf T, Stidsen CE, Norrman M, Nishimura E, Sørensen AR, Kjeldsen T. PLoS One 6 e20288 (2011)
  32. The solution structure of a superpotent B-chain-shortened single-replacement insulin analogue. Kurapkat G, Siedentop M, Gattner HG, Hagelstein M, Brandenburg D, Grötzinger J, Wollmer A. Protein Sci 8 499-508 (1999)
  33. Conformationally constrained single-chain peptide mimics of relaxin B-chain secondary structure. Del Borgo MP, Hughes RA, Wade JD. J Pept Sci 11 564-571 (2005)
  34. Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Viková J, Collinsová M, Kletvíková E, Buděšínský M, Kaplan V, Žáková L, Veverka V, Hexnerová R, Tarazona Aviñó RJ, Straková J, Selicharová I, Vaněk V, Wright DW, Watson CJ, Turkenburg JP, Brzozowski AM, Jiráček J. Sci Rep 6 19431 (2016)
  35. Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young. Křížková K, Veverka V, Maletínská L, Hexnerová R, Brzozowski AM, Jiráček J, Žáková L. PLoS One 9 e112883 (2014)
  36. Flexibility in the insulin receptor ectodomain enables docking of insulin in crystallographic conformation observed in a hormone-bound microreceptor. Vashisth H. Membranes (Basel) 4 730-746 (2014)
  37. "Register-shift" insulin analogs uncover constraints of proteotoxicity in protein evolution. Rege NK, Liu M, Dhayalan B, Chen YS, Smith NA, Rahimi L, Sun J, Guo H, Yang Y, Haataja L, Phillips NFB, Whittaker J, Smith BJ, Arvan P, Ismail-Beigi F, Weiss MA. J Biol Chem 295 3080-3098 (2020)
  38. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. J Phys Chem B 125 4620-4633 (2021)
  39. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Biophys J 121 4063-4077 (2022)