Bornyl diphosphate synthase
Boronyl diphosphate synthase catalyses the conversion of geranyl diphosphate to boronyl diphosphate. It is a member of the monoterpene synthases, a group of enzymes that catalyse the metal-dependent cyclisation of geranyl diphosphate to a variety of monoterpene products via carbocation intermediates.
Reference Protein and Structure
- Sequence
-
O81192
(4.2.3.116, 4.2.3.121, 5.5.1.8)
(Sequence Homologues)
(PDB Homologues)
- Biological species
-
Salvia officinalis (garden sage)

- PDB
-
1n20
- (+)-Bornyl Diphosphate Synthase: Complex with Mg and 3-aza-2,3-dihydrogeranyl diphosphate
(2.3 Å)
- Catalytic CATH Domains
-
1.10.600.10
(see all for 1n20)
- Cofactors
- Magnesium(2+) (3) Metal MACiE
Enzyme Reaction (EC:5.5.1.8)
Enzyme Mechanism
Introduction
Boronyl diphosphate synthase catalyses its reaction by promoting ionisation of the substrate and subsequently using both the departed pyrophosphate group and cation-pi interactions from aromatic residues to stabilise and orientate carbocation intermediates. Initial substrate ionisation is promoted by three Mg2+ ions that stabilise the departing pyrophosphate leaving group. Recapture of the pyrophosphate at C3 to give (3R)-linalyl diphosphate allows rotation around the C2-C3 bond. Re-ionisation now facilitates SN' cyclisation to give the (4R)-alpha-terpinyl cation. The C8 carbocation is likely to be stabilised by cation-pi interactions involving Phe 578 and Trp 323. Further anti-Markovnikov cyclisation gives the 2-boronyl cation that is quenched by pyrophosphate to yield the final product.
Catalytic Residues Roles
| UniProt | PDB* (1n20) | ||
| Asp351, Asp355, Asp496, Thr500, Glu504 | Asp351(302)A, Asp355(306)A, Asp496(447)A, Thr500(451)A, Glu504(455)A | Coordinate Mg ions | metal ligand |
| Trp323, Phe578 | Trp323(274)A, Phe578(529)A | Proposed to stabilise accumulation of positive charge on C8 carbocation using cation-pi interactions. | van der waals interaction, polar/non-polar interaction, steric role, electrostatic stabiliser |
| Ile344, Val452 | Ile344(295)A, Val452(403)A | Play an important role in ensuring the correct reaction occurs by restricting the conformations that the intermediates can take. | van der waals interaction, steric role |
Chemical Components
heterolysis, overall reactant used, charge delocalisation, dephosphorylation, intermediate formation, bimolecular nucleophilic addition, intramolecular electrophilic addition, cyclisation, overall product formedReferences
- Whittington DA et al. (2002), Proc Natl Acad Sci U S A, 99, 15375-15380. Nonlinear partial differential equations and applications: Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. DOI:10.1073/pnas.232591099. PMID:12432096.
- O’Brien TE et al. (2018), ACS Catal, 8, 3322-3330. Predicting Productive Binding Modes for Substrates and Carbocation Intermediates in Terpene Synthases—Bornyl Diphosphate Synthase As a Representative Case. DOI:10.1021/acscatal.8b00342.
- Wise ML et al. (1998), J Biol Chem, 273, 14891-14899. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. PMID:9614092.
Step 1. The substrate undergoes heterolysis. The diphosphate product remains associated with the active site, and the cabocation is delocalised over the three terminal carbon atoms of the intermediate.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, van der waals interaction |
| Trp323(274)A | steric role, van der waals interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |
Chemical Components
heterolysis, overall reactant used, charge delocalisation, dephosphorylation, intermediate formationStep 2. The diphosphate initiates nucleophilic attack at the C4 carbon, which causes double bond rearrangement and the formation of the linalyl diphosphate intermediate.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, van der waals interaction |
| Trp323(274)A | steric role, van der waals interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |
Chemical Components
ingold: bimolecular nucleophilic addition, intermediate formationStep 3. Isomerisation to linalyl diphosphate allows rotation of the newly formed C2-C3 bond to the cisoid conformer. The linalyl diphosphate undergoes heterolysis. The diphosphate product remains associated with the active site, and the cabocation is delocalised over the three terminal carbon atoms of the intermediate.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, van der waals interaction |
| Trp323(274)A | steric role, van der waals interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |
Chemical Components
heterolysis, overall reactant used, charge delocalisation, dephosphorylation, intermediate formationStep 4. The terminal double bond adds to the newly formed carbocation in an intramolecular electrophilic addition resulting in a cyclic intermediate.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, electrostatic stabiliser, polar/non-polar interaction |
| Trp323(274)A | steric role, electrostatic stabiliser, polar/non-polar interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |
Chemical Components
ingold: intramolecular electrophilic addition, cyclisation, intermediate formationStep 5. The remaining double bond adds to the newly formed carbocation in an intramolecular electrophilic addition resulting in a bicyclic intermediate.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, electrostatic stabiliser, polar/non-polar interaction |
| Trp323(274)A | steric role, electrostatic stabiliser, polar/non-polar interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |
Chemical Components
ingold: intramolecular electrophilic addition, cyclisation, intermediate formationStep 6. The diphosphate initiates nucleophilic attack at the carbocation, forming the final product.
Download: Image, Marvin FileCatalytic Residues Roles
| Residue | Roles |
|---|---|
| Phe578(529)A | steric role, van der waals interaction |
| Trp323(274)A | steric role, van der waals interaction |
| Val452(403)A | steric role, van der waals interaction |
| Ile344(295)A | steric role, van der waals interaction |
| Asp351(302)A | metal ligand |
| Asp355(306)A | metal ligand |
| Asp496(447)A | metal ligand |
| Thr500(451)A | metal ligand |
| Glu504(455)A | metal ligand |