Pantoate-beta-alanine ligase

 

Pantothenate synthetase (PS), isolated from Mycobacterium tuberculosis, catalyses the ATP-dependent condensation between pantoate and beta-alanine to form pantothenate. This is the last step in the biosynthesis of pantothenate, which is required for CoA synthesis. The reaction proceeds by a Bi Uni Uni Bi Ping Pong kinetic mechanism. PS is a potential drug target for the treatment of tuberculosis.

 

Reference Protein and Structure

Sequence
P9WIL5 UniProt (6.3.2.1) IPR003721 (Sequence Homologues) (PDB Homologues)
Biological species
Mycobacterium tuberculosis H37Rv (Bacteria) Uniprot
PDB
2a84 - Crystal structure of A Pantothenate synthetase complexed with ATP (1.55 Å) PDBe PDBsum 2a84
Catalytic CATH Domains
3.40.50.620 CATHdb 3.30.1300.10 CATHdb (see all for 2a84)
Cofactors
Magnesium(2+) (1) Metal MACiE
Click To Show Structure

Enzyme Reaction (EC:6.3.2.1)

beta-alanine zwitterion
CHEBI:57966ChEBI
+
ATP(4-)
CHEBI:30616ChEBI
+
(R)-pantoate
CHEBI:15980ChEBI
(R)-pantothenate
CHEBI:29032ChEBI
+
adenosine 5'-monophosphate(2-)
CHEBI:456215ChEBI
+
diphosphate(3-)
CHEBI:33019ChEBI
+
hydron
CHEBI:15378ChEBI
Alternative enzyme names: D-pantoate:beta-alanine ligase (AMP-forming), Pantoate-activating enzyme, Pantoic-activating enzyme, Pantothenate synthetase,

Enzyme Mechanism

Introduction

The carboxyl oxygen of pantoate attacks the alpha-phosphate of ATP in an in-line nucleophilic attack to give pantoyl adenylate and pyrophosphate. The transition state is stabilised by a number of interactions with residues and with a magnesium ion bound to the three phosphate groups. His47 donates a proton to the pyrophosphate leaving group. The amino group of beta-alanine is the nucleophile for attack on the carbonyl carbon of pantoyl adenylate to give pantothenate and AMP.

Catalytic Residues Roles

UniProt PDB* (2a84)
Met40 (main-N) Met40A (main-N) Met 40 forms a hydrogen bond to the alpha-phosphate of ATP in the transition state of the adenylation reaction, thus stabilising it. It may also stabilise the transition state of the second reaction in the same way. electrostatic stabiliser
His44 His44A His44 is hydrogen bonded to the beta-phosphate of ATP and so can stabilise the transition state of the adenylation reaction. It is part of the HIGH motif. van der waals interaction, hydrogen bond donor, electrostatic stabiliser
His47 His47A His47 donates a proton to the pyrophosphate leaving group during adenylation. It also stabilises the transition state of this reaction by hydrogen bonding to the beta-phosphate. It is part of the HIGH motif. hydrogen bond acceptor, hydrogen bond donor, proton acceptor, proton donor, van der waals interaction, electrostatic stabiliser
Arg198 Arg198A Arg198 interacts with the gamma-phosphate of ATP during the adenylation step and stabilises the transition state. hydrogen bond donor, electrostatic stabiliser
Ser196 Ser196A Ser196 interacts with the gamma-phosphate of ATP during the adenylation step and stabilises the transition state. It is part of the KSMKS motif. hydrogen bond donor, electrostatic stabiliser
Ser197 Ser197A Ser197 interacts with the gamma-phosphate of ATP during the adenylation step and stabilises the transition state. It is part of the KSMKS motif. hydrogen bond donor, electrostatic stabiliser
Lys160 Lys160A Lys160 interacts with the beta-phosphate of ATP during the adenylation step and stabilises the transition state. electrostatic stabiliser
Asp89 (main-N), Asp88, Gln92 Asp89A (main-N), Asp88A, Gln92A Forms the magnesium binding site. metal ligand
*PDB label guide - RESx(y)B(C) - RES: Residue Name; x: Residue ID in PDB file; y: Residue ID in PDB sequence if different from PDB file; B: PDB Chain; C: Biological Assembly Chain if different from PDB. If label is "Not Found" it means this residue is not found in the reference PDB.

Chemical Components

bimolecular nucleophilic substitution, proton transfer, bimolecular nucleophilic addition, unimolecular elimination by the conjugate base, inferred reaction step, native state of enzyme regenerated

References

  1. Wang S et al. (2006), Biochemistry, 45, 1554-1561. Crystal Structure of the Pantothenate Synthetase fromMycobacterium tuberculosis, Snapshots of the Enzyme in Action†,‡. DOI:10.1021/bi051873e. PMID:16460002.
  2. Xu Z et al. (2014), Bioorg Med Chem, 22, 1726-1735. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. DOI:10.1016/j.bmc.2014.01.017. PMID:24507827.
  3. Satoh A et al. (2010), Biochemistry, 49, 6400-6410. Substrate-Induced Closing of the Active Site Revealed by the Crystal Structure of Pantothenate Synthetase fromStaphylococcus aureus. DOI:10.1021/bi1004206. PMID:20568730.
  4. Ciulli A et al. (2008), Chembiochem, 9, 2606-2611. Inhibition ofMycobacterium tuberculosisPantothenate Synthetase by Analogues of the Reaction Intermediate. DOI:10.1002/cbic.200800437. PMID:18821554.
  5. Zheng R et al. (2004), Biochemistry, 43, 7171-7178. Active Site Residues inMycobacterium tuberculosisPantothenate Synthetase Required in the Formation and Stabilization of the Adenylate Intermediate†. DOI:10.1021/bi049676n. PMID:15170354.
  6. Wang S et al. (2003), Protein Sci, 12, 1097-1108. Crystal structures of a pantothenate synthetase fromM. tuberculosisand its complexes with substrates and a reaction intermediate. DOI:10.1110/ps.0241803. PMID:12717031.
  7. Saraste M et al. (1990), Trends Biochem Sci, 15, 430-434. The P-loop — a common motif in ATP- and GTP-binding proteins. DOI:10.1016/0968-0004(90)90281-f. PMID:2126155.
  8. Leatherbarrow RJ et al. (1987), Biochemistry, 26, 8524-8528. Investigation of transition-state stabilization by residues histidine-45 and threonine-40 in the tyrosyl-tRNA synthetase. DOI:10.1021/bi00400a005. PMID:3126804.

Catalytic Residues Roles

Residue Roles
Ser196A hydrogen bond donor, electrostatic stabiliser
Arg198A hydrogen bond donor, electrostatic stabiliser
His44A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Ser197A hydrogen bond donor, electrostatic stabiliser
His47A hydrogen bond donor, van der waals interaction, electrostatic stabiliser
Asp88A metal ligand
Gln92A metal ligand
Met40A (main-N) electrostatic stabiliser
Asp89A (main-N) metal ligand
Lys160A electrostatic stabiliser
His47A proton donor

Chemical Components

ingold: bimolecular nucleophilic substitution, proton transfer

Catalytic Residues Roles

Residue Roles
Ser196A hydrogen bond donor, electrostatic stabiliser
Arg198A hydrogen bond donor, electrostatic stabiliser
His44A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Ser197A hydrogen bond donor, electrostatic stabiliser
His47A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Asp88A metal ligand
Gln92A metal ligand
Asp89A (main-N) metal ligand

Chemical Components

proton transfer

Catalytic Residues Roles

Residue Roles
Ser196A hydrogen bond donor, electrostatic stabiliser
Arg198A hydrogen bond donor, electrostatic stabiliser
His44A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Ser197A hydrogen bond donor, electrostatic stabiliser
His47A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Asp88A metal ligand
Gln92A metal ligand
Asp89A (main-N) metal ligand

Chemical Components

ingold: bimolecular nucleophilic addition

Catalytic Residues Roles

Residue Roles
Ser196A hydrogen bond donor, electrostatic stabiliser
Arg198A hydrogen bond donor, electrostatic stabiliser
His44A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Ser197A hydrogen bond donor, electrostatic stabiliser
His47A van der waals interaction, hydrogen bond donor, electrostatic stabiliser
Asp89A (main-N) metal ligand
Asp88A metal ligand
Gln92A metal ligand

Chemical Components

ingold: unimolecular elimination by the conjugate base

Catalytic Residues Roles

Residue Roles
His44A van der waals interaction, electrostatic stabiliser
His47A van der waals interaction, hydrogen bond acceptor, electrostatic stabiliser
Asp88A metal ligand
Gln92A metal ligand
Asp89A (main-N) metal ligand
His47A proton acceptor

Chemical Components

proton transfer, inferred reaction step, native state of enzyme regenerated

Contributors

Judith A. Reeks, Gemma L. Holliday