spacer
spacer

PDBsum entry 5mcp

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
5mcp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
440 a.a.
387 a.a.
342 a.a.
382 a.a.
321 a.a.
Ligands
ATP ×24
Metals
_MG ×8
Waters ×1276
PDB id:
5mcp
Name: Oxidoreductase
Title: Structure of imp dehydrogenase from ashbya gossypii bound to atp
Structure: Inosine-5'-monophosphate dehydrogenase. Chain: a, b, c, d, e, f, g, h. Synonym: impdh. Engineered: yes
Source: Ashbya gossypii (strain atcc 10895 / cbs 109.51 / fgsc 9923 / nrrl y-1056). Yeast. Organism_taxid: 284811. Strain: atcc 10895 / cbs 109.51 / fgsc 9923 / nrrl y-1056. Gene: agos_aer117w. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008
Resolution:
2.40Å     R-factor:   0.251     R-free:   0.271
Authors: G.Winter,D.Fernandez-Justel,J.M.De Pereda,J.L.Revuelta,R.M.Buey
Key ref: R.M.Buey et al. (2017). A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep, 7, 2648. PubMed id: 28572600
Date:
10-Nov-16     Release date:   14-Jun-17    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q756Z6  (Q756Z6_ASHGO) -  Inosine-5'-monophosphate dehydrogenase from Eremothecium gossypii (strain ATCC 10895 / CBS 109.51 / FGSC 9923 / NRRL Y-1056)
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
440 a.a.
Protein chain
Pfam   ArchSchema ?
Q756Z6  (Q756Z6_ASHGO) -  Inosine-5'-monophosphate dehydrogenase from Eremothecium gossypii (strain ATCC 10895 / CBS 109.51 / FGSC 9923 / NRRL Y-1056)
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
387 a.a.*
Protein chain
Pfam   ArchSchema ?
Q756Z6  (Q756Z6_ASHGO) -  Inosine-5'-monophosphate dehydrogenase from Eremothecium gossypii (strain ATCC 10895 / CBS 109.51 / FGSC 9923 / NRRL Y-1056)
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
342 a.a.
Protein chain
Pfam   ArchSchema ?
Q756Z6  (Q756Z6_ASHGO) -  Inosine-5'-monophosphate dehydrogenase from Eremothecium gossypii (strain ATCC 10895 / CBS 109.51 / FGSC 9923 / NRRL Y-1056)
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
382 a.a.
Protein chain
Pfam   ArchSchema ?
Q756Z6  (Q756Z6_ASHGO) -  Inosine-5'-monophosphate dehydrogenase from Eremothecium gossypii (strain ATCC 10895 / CBS 109.51 / FGSC 9923 / NRRL Y-1056)
Seq:
Struc:
 
Seq:
Struc:
522 a.a.
321 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F, G, H: E.C.1.1.1.205  - Imp dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
AMP and GMP Biosynthesis
      Reaction: IMP + NAD+ + H2O = XMP + NADH + H+
IMP
+
NAD(+)
Bound ligand (Het Group name = ATP)
matches with 68.75% similarity
+ H2O
= XMP
+ NADH
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Sci Rep 7:2648 (2017)
PubMed id: 28572600  
 
 
A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases.
R.M.Buey, D.Fernández-Justel, ..Marcos-Alcalde, G.Winter, P.Gómez-Puertas, J.M.de Pereda, J.Luis Revuelta.
 
  ABSTRACT  
 
Inosine-5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme for nucleotide metabolism and cell proliferation. Despite IMPDH is the target of drugs with antiviral, immunosuppressive and antitumor activities, its physiological mechanisms of regulation remain largely unknown. Using the enzyme from the industrial fungus Ashbya gossypii, we demonstrate that the binding of adenine and guanine nucleotides to the canonical nucleotide binding sites of the regulatory Bateman domain induces different enzyme conformations with significantly distinct catalytic activities. Thereby, the comparison of their high-resolution structures defines the mechanistic and structural details of a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity of eukaryotic IMPDHs. Remarkably, retinopathy-associated mutations lie within the mechanical hinges of the conformational change, highlighting its physiological relevance. Our results expand the mechanistic repertoire of Bateman domains and pave the road to new approaches targeting IMPDHs.
 

 

spacer

spacer