spacer
spacer

PDBsum entry 2oa8

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Hydrolase/DNA PDB id
2oa8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
220 a.a. *
DNA/RNA
Metals
_CA ×4
Waters ×288
* Residue conservation analysis
PDB id:
2oa8
Name: Hydrolase/DNA
Title: Crystal structure of mtrex1 with ssdna
Structure: 5'-d( Gp Ap Cp G)-3'. Chain: c, d. Engineered: yes. Three prime repair exonuclease 1. Chain: a, b. Fragment: n-terminal fragment, residues 5-234. Synonym: 3'-5' exonuclease trex1. Engineered: yes
Source: Synthetic: yes. Mus musculus. House mouse. Organism_taxid: 10090. Gene: trex1. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
2.10Å     R-factor:   0.195     R-free:   0.259
Authors: U.De Silva,T.Hollis
Key ref:
U.de Silva et al. (2007). The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering. J Biol Chem, 282, 10537-10543. PubMed id: 17293595 DOI: 10.1074/jbc.M700039200
Date:
15-Dec-06     Release date:   20-Feb-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q91XB0  (TREX1_MOUSE) -  Three-prime repair exonuclease 1 from Mus musculus
Seq:
Struc:
314 a.a.
220 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-A-C-G 4 bases
  G-A-C-G 4 bases

 Enzyme reactions 
   Enzyme class: E.C.3.1.11.2  - exodeoxyribonuclease Iii.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Degradation of double-stranded DNA. It acts progressively in a 3'- to 5'-direction, releasing nucleoside 5'-phosphates.

 

 
DOI no: 10.1074/jbc.M700039200 J Biol Chem 282:10537-10543 (2007)
PubMed id: 17293595  
 
 
The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering.
U.de Silva, S.Choudhury, S.L.Bailey, S.Harvey, F.W.Perrino, T.Hollis.
 
  ABSTRACT  
 
The TREX1 enzyme processes DNA ends as the major 3' --> 5' exonuclease activity in human cells. Mutations in the TREX1 gene are an underlying cause of the neurological brain disease Aicardi-Goutières syndrome implicating TREX1 dysfunction in an aberrant immune response. TREX1 action during apoptosis likely prevents autoimmune reaction to DNA that would otherwise persist. To understand the impact of TREX1 mutations identified in patients with Aicardi-Goutières syndrome on structure and activity we determined the x-ray crystal structure of the dimeric mouse TREX1 protein in substrate and product complexes containing single-stranded DNA and deoxyadenosine monophosphate, respectively. The structures show the specific interactions between the bound nucleotides and the residues lining the binding pocket of the 3' terminal nucleotide within the enzyme active site that account for specificity, and provide the molecular basis for understanding mutations that lead to disease. Three mutant forms of TREX1 protein identified in patients with Aicardi-Goutières syndrome were prepared and the measured activities show that these specific mutations reduce enzyme activity by 4-35,000-fold. The structure also reveals an 8-amino acid polyproline II helix within the TREX1 enzyme that suggests a mechanism for interactions of this exonuclease with other protein complexes.
 
  Selected figure(s)  
 
Figure 1.
FIGURE 1. The TREX1 dimer in complex with ssDNA. The TREX1 exonuclease dimerizes about a 2-fold axis perpendicular to the -strands (monomers shown in blue and green). This interaction creates an extended anti-parallel -sheet through the core of the dimer and places the two active sites on opposite outer edges. The complex contains ssDNA (shown as sticks) and Ca^2+ (shown as red spheres) bound in both of the active sites.
Figure 4.
FIGURE 4. TREX1 structure reveals PPII helix. a, the non-repetitive proline-rich region within TREX1 forms a PPII. The PPII helix, made up of residues 54–62, has a tight, 3-sided, left-handed secondary structure. PPII helices often function as interaction motifs with other proteins containing SH3, WW, or EVH1 domains. b, location of PPII helices (shown in red) within the TREX1 dimer. The positioning on opposite outer edges of the same face of the dimer might play a key role in TREX1 protein interactions by allowing for simultaneous binding of multiple interaction domains to the dimer.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2007, 282, 10537-10543) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
21317904 Y.Y.Hsiao, C.C.Yang, C.L.Lin, J.L.Lin, Y.Duh, and H.S.Yuan (2011).
Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
  Nat Chem Biol, 7, 236-243.
PDB codes: 3ngy 3ngz 3nh0 3nh1 3nh2
20457749 A.Shimada, R.Masui, N.Nakagawa, Y.Takahata, K.Kim, S.Kuramitsu, and K.Fukui (2010).
A novel single-stranded DNA-specific 3'-5' exonuclease, Thermus thermophilus exonuclease I, is involved in several DNA repair pathways.
  Nucleic Acids Res, 38, 5692-5705.  
21150990 F.A.Rey (2010).
Virology: One protein, many functions.
  Nature, 468, 773-775.  
19923215 N.M.Shaban, S.Harvey, F.W.Perrino, and T.Hollis (2010).
The structure of the mammalian RNase H2 complex provides insight into RNA.NA hybrid processing to prevent immune dysfunction.
  J Biol Chem, 285, 3617-3624.
PDB code: 3kio
21085117 X.Qi, S.Lan, W.Wang, L.M.Schelde, H.Dong, G.D.Wallat, H.Ly, Y.Liang, and C.Dong (2010).
Cap binding and immune evasion revealed by Lassa nucleoprotein structure.
  Nature, 468, 779-783.
PDB codes: 3mwp 3mwt 3mx2 3mx5
19596809 A.Schwede, T.Manful, B.A.Jha, C.Helbig, N.Bercovich, M.Stewart, and C.Clayton (2009).
The role of deadenylation in the degradation of unstable mRNAs in trypanosomes.
  Nucleic Acids Res, 37, 5511-5528.  
19034401 F.W.Perrino, S.Harvey, N.M.Shaban, and T.Hollis (2009).
RNaseH2 mutants that cause Aicardi-Goutieres syndrome are active nucleases.
  J Mol Med, 87, 25-30.  
19119875 G.A.Cisneros, L.Perera, R.M.Schaaper, L.C.Pedersen, R.E.London, L.G.Pedersen, and T.A.Darden (2009).
Reaction mechanism of the epsilon subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues.
  J Am Chem Soc, 131, 1550-1556.  
19321497 U.de Silva, F.W.Perrino, and T.Hollis (2009).
DNA binding induces active site conformational change in the human TREX2 3'-exonuclease.
  Nucleic Acids Res, 37, 2411-2417.  
19808788 Y.J.Crow, and J.Rehwinkel (2009).
Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity.
  Hum Mol Genet, 18, R130-R136.  
18805785 D.A.Lehtinen, S.Harvey, M.J.Mulcahy, T.Hollis, and F.W.Perrino (2008).
The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease.
  J Biol Chem, 283, 31649-31656.  
  18583934 D.Kavanagh, D.Spitzer, P.H.Kothari, A.Shaikh, M.K.Liszewski, A.Richards, and J.P.Atkinson (2008).
New roles for the major human 3'-5' exonuclease TREX1 in human disease.
  Cell Cycle, 7, 1718-1725.  
18534978 F.W.Perrino, U.de Silva, S.Harvey, E.E.Pryor, D.W.Cole, and T.Hollis (2008).
Cooperative DNA binding and communication across the dimer interface in the TREX2 3' --> 5'-exonuclease.
  J Biol Chem, 283, 21441-21452.  
18780819 M.Brucet, J.Querol-Audí, K.Bertlik, J.Lloberas, I.Fita, and A.Celada (2008).
Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases.
  Protein Sci, 17, 2059-2069.
PDB codes: 3b6o 3b6p
17846997 G.Rice, T.Patrick, R.Parmar, C.F.Taylor, A.Aeby, J.Aicardi, R.Artuch, S.A.Montalto, C.A.Bacino, B.Barroso, P.Baxter, W.S.Benko, C.Bergmann, E.Bertini, R.Biancheri, E.M.Blair, N.Blau, D.T.Bonthron, T.Briggs, L.A.Brueton, H.G.Brunner, C.J.Burke, I.M.Carr, D.R.Carvalho, K.E.Chandler, H.J.Christen, P.C.Corry, F.M.Cowan, H.Cox, S.D'Arrigo, J.Dean, C.De Laet, C.De Praeter, C.Dery, C.D.Ferrie, K.Flintoff, S.G.Frints, A.Garcia-Cazorla, B.Gener, C.Goizet, F.Goutieres, A.J.Green, A.Guet, B.C.Hamel, B.E.Hayward, A.Heiberg, R.C.Hennekam, M.Husson, A.P.Jackson, R.Jayatunga, Y.H.Jiang, S.G.Kant, A.Kao, M.D.King, H.M.Kingston, J.Klepper, M.S.van der Knaap, A.J.Kornberg, D.Kotzot, W.Kratzer, D.Lacombe, L.Lagae, P.G.Landrieu, G.Lanzi, A.Leitch, M.J.Lim, J.H.Livingston, C.M.Lourenco, E.G.Lyall, S.A.Lynch, M.J.Lyons, D.Marom, J.P.McClure, R.McWilliam, S.B.Melancon, L.D.Mewasingh, M.L.Moutard, K.K.Nischal, J.R.Ostergaard, J.Prendiville, M.Rasmussen, R.C.Rogers, D.Roland, E.M.Rosser, K.Rostasy, A.Roubertie, A.Sanchis, R.Schiffmann, S.Scholl-Burgi, S.Seal, S.A.Shalev, C.S.Corcoles, G.P.Sinha, D.Soler, R.Spiegel, J.B.Stephenson, U.Tacke, T.Y.Tan, M.Till, and J.L.Tolmie (2007).
Clinical and molecular phenotype of Aicardi-Goutieres syndrome.
  Am J Hum Genet, 81, 713-725.  
17660818 M.A.Lee-Kirsch, M.Gong, D.Chowdhury, L.Senenko, K.Engel, Y.A.Lee, U.de Silva, S.L.Bailey, T.Witte, T.J.Vyse, J.Kere, C.Pfeiffer, S.Harvey, A.Wong, S.Koskenmies, O.Hummel, K.Rohde, R.E.Schmidt, A.F.Dominiczak, M.Gahr, T.Hollis, F.W.Perrino, J.Lieberman, and N.Hübner (2007).
Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus.
  Nat Genet, 39, 1065-1067.  
18045533 Y.G.Yang, T.Lindahl, and D.E.Barnes (2007).
Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease.
  Cell, 131, 873-886.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer