 |
PDBsum entry 1sdf
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Embo J
16:6996-7007
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1.
|
|
M.P.Crump,
J.H.Gong,
P.Loetscher,
K.Rajarathnam,
A.Amara,
F.Arenzana-Seisdedos,
J.L.Virelizier,
M.Baggiolini,
B.D.Sykes,
I.Clark-Lewis.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The three-dimensional structure of stromal cell-derived factor-1 (SDF-1) was
determined by NMR spectroscopy. SDF-1 is a monomer with a disordered N-terminal
region (residues 1-8), and differs from other chemokines in the packing of the
hydrophobic core and surface charge distribution. Results with analogs showed
that the N-terminal eight residues formed an important receptor binding site;
however, only Lys-1 and Pro-2 were directly involved in receptor activation.
Modification to Lys-1 and/or Pro-2 resulted in loss of activity, but generated
potent SDF-1 antagonists. Residues 12-17 of the loop region, which we term the
RFFESH motif, unlike the N-terminal region, were well defined in the SDF-1
structure. The RFFESH formed a receptor binding site, which we propose to be an
important initial docking site of SDF-1 with its receptor. The ability of the
SDF-1 analogs to block HIV-1 entry via CXCR4, which is a HIV-1 coreceptor for
the virus in addition to being the receptor for SDF-1, correlated with their
affinity for CXCR4. Activation of the receptor is not required for HIV-1
inhibition.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1 The structure of SDF-1. (A) A stereoview of a
superimposition of the 30 simulated annealing structures of
SDF-1 on the average structure. The RMS deviation for residues 9
-65 between all 30 structures and the average structure is 0.35
Å for backbone and 0.96 Å for heavy atoms. (B) A schematic
diagram showing the restrained minimized average structure of
SDF-1 created with the program MOLSCRIPT (Kraulis, 1991) and
Raster3D (Merritt and Murphy, 1994).
|
 |
Figure 7.
Figure 7 A model for interaction of SDF-1 with CXCR4. A
schematic depicting the interaction of SDF-1 with the receptor
is shown. CXCR4 is shown with the seven helices represented as
cylinders, which are connected by the surface and cytoplasmic
loops. The N-terminal and C-terminal segments of the receptor,
and the N- and C-terminus of SDF-1, are annotated as N and C.
SDF-1 is shown as a MOLSCRIPT diagram. (A) indicates the
receptor and ligand separately prior to any interaction between
the two. (B) indicates interaction of the SDF-1 RFFESH loop
(site 1) with the N-terminal segment of the receptor. The
contact region is shown in blue. Two of the helices are
truncated [compare with (A)] to highlight the binding groove of
the receptor. (C) Shows the N-terminal region (site 2) of SDF-1
bound in groove at the top of the helices (orange). Binding of
the N-terminal region results in activation of the receptor,
which is depicted in (C) by the change in conformation of the
receptor helices compared with (B).
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
Embo J
(1997,
16,
6996-7007)
copyright 1997.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.H.Park,
B.B.Das,
F.Casagrande,
Y.Tian,
H.J.Nothnagel,
M.Chu,
H.Kiefer,
K.Maier,
A.A.De Angelis,
F.M.Marassi,
and
S.J.Opella
(2012).
Structure of the chemokine receptor CXCR1 in phospholipid bilayers.
|
| |
Nature,
491,
779-783.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.L.Salanga,
and
T.M.Handel
(2011).
Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function.
|
| |
Exp Cell Res,
317,
590-601.
|
 |
|
|
|
|
 |
C.Zhong,
and
J.Ding
(2011).
New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4.
|
| |
Acta Biochim Biophys Sin (Shanghai),
43,
337-338.
|
 |
|
|
|
|
 |
K.Bellmann-Sickert,
and
A.G.Beck-Sickinger
(2011).
Palmitoylated SDF1 α shows increased resistance against proteolytic degradation in liver homogenates.
|
| |
ChemMedChem,
6,
193-200.
|
 |
|
|
|
|
 |
O.Chertov,
N.Zhang,
X.Chen,
J.J.Oppenheim,
J.Lubkowski,
C.McGrath,
R.C.Sowder,
B.J.Crise,
A.Malyguine,
M.A.Kutzler,
A.D.Steele,
E.E.Henderson,
and
T.J.Rogers
(2011).
Novel peptides based on HIV-1 gp120 sequence with homology to chemokines inhibit HIV infection in cell culture.
|
| |
PLoS One,
6,
e14474.
|
 |
|
|
|
|
 |
A.Viejo-Borbolla,
A.Muñoz,
E.Tabarés,
and
A.Alcamí
(2010).
Glycoprotein G from pseudorabies virus binds to chemokines with high affinity and inhibits their function.
|
| |
J Gen Virol,
91,
23-31.
|
 |
|
|
|
|
 |
B.Antonsson,
P.De Lys,
V.Dechavanne,
L.Chevalet,
and
U.Boschert
(2010).
In vivo processing of CXCL12α/SDF-1α after intravenous and subcutaneous administration to mice.
|
| |
Proteomics,
10,
4342-4351.
|
 |
|
|
|
|
 |
B.R.Joubert,
E.M.Lange,
N.Franceschini,
V.Mwapasa,
K.E.North,
and
S.R.Meshnick
(2010).
A whole genome association study of mother-to-child transmission of HIV in Malawi.
|
| |
Genome Med,
2,
17.
|
 |
|
|
|
|
 |
B.Wu,
E.Y.Chien,
C.D.Mol,
G.Fenalti,
W.Liu,
V.Katritch,
R.Abagyan,
A.Brooun,
P.Wells,
F.C.Bi,
D.J.Hamel,
P.Kuhn,
T.M.Handel,
V.Cherezov,
and
R.C.Stevens
(2010).
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
|
| |
Science,
330,
1066-1071.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.W.Murphy,
H.Yuan,
Y.Kong,
Y.Xiong,
and
E.J.Lolis
(2010).
Heterologous quaternary structure of CXCL12 and its relationship to the CC chemokine family.
|
| |
Proteins,
78,
1331-1337.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Bellmann-Sickert,
L.Baumann,
and
A.G.Beck-Sickinger
(2010).
Selective labelling of stromal cell-derived factor 1α with carboxyfluorescein to study receptor internalisation.
|
| |
J Pept Sci,
16,
568-574.
|
 |
|
|
|
|
 |
L.Baumann,
and
A.G.Beck-Sickinger
(2010).
Identification of a potential modification site in human stromal cell-derived factor-1.
|
| |
Biopolymers,
94,
771-778.
|
 |
|
|
|
|
 |
U.Naumann,
E.Cameroni,
M.Pruenster,
H.Mahabaleshwar,
E.Raz,
H.G.Zerwes,
A.Rot,
and
M.Thelen
(2010).
CXCR7 functions as a scavenger for CXCL12 and CXCL11.
|
| |
PLoS One,
5,
e9175.
|
 |
|
|
|
|
 |
A.Egorova,
A.Kiselev,
M.Hakli,
M.Ruponen,
V.Baranov,
and
A.Urtti
(2009).
Chemokine-derived peptides as carriers for gene delivery to CXCR4 expressing cells.
|
| |
J Gene Med,
11,
772-781.
|
 |
|
|
|
|
 |
A.Ravindran,
P.R.Joseph,
and
K.Rajarathnam
(2009).
Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics.
|
| |
Biochemistry,
48,
8795-8805.
|
 |
|
|
|
|
 |
C.T.Veldkamp,
J.J.Ziarek,
J.Su,
H.Basnet,
R.Lennertz,
J.J.Weiner,
F.C.Peterson,
J.E.Baker,
and
B.F.Volkman
(2009).
Monomeric structure of the cardioprotective chemokine SDF-1/CXCL12.
|
| |
Protein Sci,
18,
1359-1369.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Shim,
S.Oishi,
and
N.Fujii
(2009).
Chemokine receptor CXCR4 as a therapeutic target for neuroectodermal tumors.
|
| |
Semin Cancer Biol,
19,
123-134.
|
 |
|
|
|
|
 |
J.M.Gao,
R.L.Xiang,
L.Jiang,
W.H.Li,
Q.P.Feng,
Z.J.Guo,
Q.Sun,
Z.P.Zeng,
and
F.D.Fang
(2009).
Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10.
|
| |
Acta Pharmacol Sin,
30,
193-201.
|
 |
|
|
|
|
 |
M.Janowski
(2009).
Functional diversity of SDF-1 splicing variants.
|
| |
Cell Adh Migr,
3,
243-249.
|
 |
|
|
|
|
 |
N.Gross,
and
R.Meier
(2009).
Chemokines in neuroectodermal cancers: the crucial growth signal from the soil.
|
| |
Semin Cancer Biol,
19,
103-110.
|
 |
|
|
|
|
 |
T.Kawai,
and
H.L.Malech
(2009).
WHIM syndrome: congenital immune deficiency disease.
|
| |
Curr Opin Hematol,
16,
20-26.
|
 |
|
|
|
|
 |
Y.Kofuku,
C.Yoshiura,
T.Ueda,
H.Terasawa,
T.Hirai,
S.Tominaga,
M.Hirose,
Y.Maeda,
H.Takahashi,
Y.Terashima,
K.Matsushima,
and
I.Shimada
(2009).
Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4.
|
| |
J Biol Chem,
284,
35240-35250.
|
 |
|
|
|
|
 |
Y.Tan,
Y.Li,
J.Xiao,
H.Shao,
C.Ding,
G.E.Arteel,
K.A.Webster,
J.Yan,
H.Yu,
L.Cai,
and
X.Li
(2009).
A novel CXCR4 antagonist derived from human SDF-1beta enhances angiogenesis in ischaemic mice.
|
| |
Cardiovasc Res,
82,
513-521.
|
 |
|
|
|
|
 |
C.Seibert,
C.T.Veldkamp,
F.C.Peterson,
B.T.Chait,
B.F.Volkman,
and
T.P.Sakmar
(2008).
Sequential tyrosine sulfation of CXCR4 by tyrosylprotein sulfotransferases.
|
| |
Biochemistry,
47,
11251-11262.
|
 |
|
|
|
|
 |
C.T.Veldkamp,
C.Seibert,
F.C.Peterson,
N.B.De la Cruz,
J.C.Haugner,
H.Basnet,
T.P.Sakmar,
and
B.F.Volkman
(2008).
Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12.
|
| |
Sci Signal,
1,
ra4.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.L.Theobald,
and
D.S.Wuttke
(2008).
Accurate structural correlations from maximum likelihood superpositions.
|
| |
PLoS Comput Biol,
4,
e43.
|
 |
|
|
|
|
 |
J.Meijer,
J.Ogink,
and
E.Roos
(2008).
Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo.
|
| |
Br J Cancer,
99,
1493-1501.
|
 |
|
|
|
|
 |
K.Miyakawa,
R.Fujita,
M.Katane,
Y.Kubo,
and
H.Amanuma
(2008).
Effects of the ligand sequence modifications on the retargeted transduction by the retroviral vector having a ligand-chimeric Env protein.
|
| |
J Gen Virol,
89,
3137-3143.
|
 |
|
|
|
|
 |
L.Marquez-Curtis,
A.Jalili,
K.Deiteren,
N.Shirvaikar,
A.M.Lambeir,
and
A.Janowska-Wieczorek
(2008).
Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1alpha: another player in hematopoietic stem/progenitor cell mobilization?
|
| |
Stem Cells,
26,
1211-1220.
|
 |
|
|
|
|
 |
M.B.Ruiz-Argüello,
V.P.Smith,
G.S.Campanella,
F.Baleux,
F.Arenzana-Seisdedos,
A.D.Luster,
and
A.Alcami
(2008).
An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain.
|
| |
J Virol,
82,
917-926.
|
 |
|
|
|
|
 |
M.Hachet-Haas,
K.Balabanian,
F.Rohmer,
F.Pons,
C.Franchet,
S.Lecat,
K.Y.Chow,
R.Dagher,
P.Gizzi,
B.Didier,
B.Lagane,
E.Kellenberger,
D.Bonnet,
F.Baleux,
J.Haiech,
M.Parmentier,
N.Frossard,
F.Arenzana-Seisdedos,
M.Hibert,
and
J.L.Galzi
(2008).
Small neutralizing molecules to inhibit actions of the chemokine CXCL12.
|
| |
J Biol Chem,
283,
23189-23199.
|
 |
|
|
|
|
 |
M.Thelen,
and
J.V.Stein
(2008).
How chemokines invite leukocytes to dance.
|
| |
Nat Immunol,
9,
953-959.
|
 |
|
|
|
|
 |
S.Fermas,
F.Gonnet,
A.Sutton,
N.Charnaux,
B.Mulloy,
Y.Du,
F.Baleux,
and
R.Daniel
(2008).
Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis.
|
| |
Glycobiology,
18,
1054-1064.
|
 |
|
|
|
|
 |
X.Liang
(2008).
CXCR4, inhibitors and mechanisms of action.
|
| |
Chem Biol Drug Des,
72,
97.
|
 |
|
|
|
|
 |
C.Laguri,
R.Sadir,
P.Rueda,
F.Baleux,
P.Gans,
F.Arenzana-Seisdedos,
and
H.Lortat-Jacob
(2007).
The Novel CXCL12gamma Isoform Encodes an Unstructured Cationic Domain Which Regulates Bioactivity and Interaction with Both Glycosaminoglycans and CXCR4.
|
| |
PLoS ONE,
2,
e1110.
|
 |
|
|
|
|
 |
C.T.Veldkamp,
F.C.Peterson,
P.L.Hayes,
J.E.Mattmiller,
J.C.Haugner,
N.de la Cruz,
and
B.F.Volkman
(2007).
On-column refolding of recombinant chemokines for NMR studies and biological assays.
|
| |
Protein Expr Purif,
52,
202-209.
|
 |
|
|
|
|
 |
D.Liu,
N.Madani,
Y.Li,
R.Cao,
W.T.Choi,
S.P.Kawatkar,
M.Y.Lim,
S.Kumar,
C.Z.Dong,
J.Wang,
J.D.Russell,
C.R.Lefebure,
J.An,
S.Wilson,
Y.G.Gao,
L.A.Pallansch,
J.G.Sodroski,
and
Z.Huang
(2007).
Crystal structure and structural mechanism of a novel anti-human immunodeficiency virus and D-amino acid-containing chemokine.
|
| |
J Virol,
81,
11489-11498.
|
 |
|
|
|
|
 |
E.K.Ryu,
T.G.Kim,
T.H.Kwon,
I.D.Jung,
D.Ryu,
Y.M.Park,
J.Kim,
K.H.Ahn,
and
C.Ban
(2007).
Crystal structure of recombinant human stromal cell-derived factor-1alpha.
|
| |
Proteins,
67,
1193-1197.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Asperti-Boursin,
E.Real,
G.Bismuth,
A.Trautmann,
and
E.Donnadieu
(2007).
CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner.
|
| |
J Exp Med,
204,
1167-1179.
|
 |
|
|
|
|
 |
H.Fernando,
G.T.Nagle,
and
K.Rajarathnam
(2007).
Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain.
|
| |
FEBS J,
274,
241-251.
|
 |
|
|
|
|
 |
H.Jin,
X.Shen,
B.R.Baggett,
X.Kong,
and
P.J.LiWang
(2007).
The human CC chemokine MIP-1beta dimer is not competent to bind to the CCR5 receptor.
|
| |
J Biol Chem,
282,
27976-27983.
|
 |
|
|
|
|
 |
J.D.Altenburg,
H.E.Broxmeyer,
Q.Jin,
S.Cooper,
S.Basu,
and
G.Alkhatib
(2007).
A naturally occurring splice variant of CXCL12/stromal cell-derived factor 1 is a potent human immunodeficiency virus type 1 inhibitor with weak chemotaxis and cell survival activities.
|
| |
J Virol,
81,
8140-8148.
|
 |
|
|
|
|
 |
J.M.Busillo,
and
J.L.Benovic
(2007).
Regulation of CXCR4 signaling.
|
| |
Biochim Biophys Acta,
1768,
952-963.
|
 |
|
|
|
|
 |
J.W.Murphy,
Y.Cho,
A.Sachpatzidis,
C.Fan,
M.E.Hodsdon,
and
E.Lolis
(2007).
Structural and functional basis of CXCL12 (stromal cell-derived factor-1 alpha) binding to heparin.
|
| |
J Biol Chem,
282,
10018-10027.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.W.Christopherson,
L.A.Paganessi,
S.Napier,
and
N.K.Porecha
(2007).
CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice.
|
| |
Stem Cells Dev,
16,
355-360.
|
 |
|
|
|
|
 |
S.J.Allen,
S.E.Crown,
and
T.M.Handel
(2007).
Chemokine: receptor structure, interactions, and antagonism.
|
| |
Annu Rev Immunol,
25,
787-820.
|
 |
|
|
|
|
 |
T.Cardozo,
T.Kimura,
S.Philpott,
B.Weiser,
H.Burger,
and
S.Zolla-Pazner
(2007).
Structural basis for coreceptor selectivity by the HIV type 1 V3 loop.
|
| |
AIDS Res Hum Retroviruses,
23,
415-426.
|
 |
|
|
|
|
 |
W.Rostène,
P.Kitabgi,
and
S.M.Parsadaniantz
(2007).
Chemokines: a new class of neuromodulator?
|
| |
Nat Rev Neurosci,
8,
895-903.
|
 |
|
|
|
|
 |
Y.Li,
D.Liu,
R.Cao,
S.Kumar,
C.Dong,
J.An,
S.R.Wilson,
Y.G.Gao,
and
Z.Huang
(2007).
Crystal structure of chemically synthesized vMIP-II.
|
| |
Proteins,
67,
243-246.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.T.Veldkamp,
C.Seibert,
F.C.Peterson,
T.P.Sakmar,
and
B.F.Volkman
(2006).
Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12).
|
| |
J Mol Biol,
359,
1400-1409.
|
 |
|
|
|
|
 |
D.K.Jin,
K.Shido,
H.G.Kopp,
I.Petit,
S.V.Shmelkov,
L.M.Young,
A.T.Hooper,
H.Amano,
S.T.Avecilla,
B.Heissig,
K.Hattori,
F.Zhang,
D.J.Hicklin,
Y.Wu,
Z.Zhu,
A.Dunn,
H.Salari,
Z.Werb,
N.R.Hackett,
R.G.Crystal,
D.Lyden,
and
S.Rafii
(2006).
Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes.
|
| |
Nat Med,
12,
557-567.
|
 |
|
|
|
|
 |
G.Gaibelet,
T.Planchenault,
S.Mazères,
F.Dumas,
F.Arenzana-Seisdedos,
A.Lopez,
B.Lagane,
and
F.Bachelerie
(2006).
CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach.
|
| |
J Biol Chem,
281,
37921-37929.
|
 |
|
|
|
|
 |
J.Våbenø,
G.V.Nikiforovich,
and
G.R.Marshall
(2006).
Insight into the binding mode for cyclopentapeptide antagonists of the CXCR4 receptor.
|
| |
Chem Biol Drug Des,
67,
346-354.
|
 |
|
|
|
|
 |
K.Rajarathnam,
G.N.Prado,
H.Fernando,
I.Clark-Lewis,
and
J.Navarro
(2006).
Probing receptor binding activity of interleukin-8 dimer using a disulfide trap.
|
| |
Biochemistry,
45,
7882-7888.
|
 |
|
|
|
|
 |
L.Rajagopalan,
and
K.Rajarathnam
(2006).
Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity.
|
| |
Biosci Rep,
26,
325-339.
|
 |
|
|
|
|
 |
L.Zhang,
M.Derider,
M.A.McCornack,
S.C.Jao,
N.Isern,
T.Ness,
R.Moyer,
and
P.J.LiWang
(2006).
Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta.
|
| |
Proc Natl Acad Sci U S A,
103,
13985-13990.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.B.Bowie,
K.D.McKnight,
D.G.Kent,
L.McCaffrey,
P.A.Hoodless,
and
C.J.Eaves
(2006).
Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect.
|
| |
J Clin Invest,
116,
2808-2816.
|
 |
|
|
|
|
 |
O.K.Baryshnikova,
and
B.D.Sykes
(2006).
Backbone dynamics of SDF-1alpha determined by NMR: interpretation in the presence of monomer-dimer equilibrium.
|
| |
Protein Sci,
15,
2568-2578.
|
 |
|
|
|
|
 |
O.Rosen,
M.Sharon,
S.R.Quadt-Akabayov,
and
J.Anglister
(2006).
Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion.
|
| |
Proc Natl Acad Sci U S A,
103,
13950-13955.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.M.Kazmierski,
T.P.Kenakin,
and
K.S.Gudmundsson
(2006).
Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4.
|
| |
Chem Biol Drug Des,
67,
13-26.
|
 |
|
|
|
|
 |
C.T.Veldkamp,
F.C.Peterson,
A.J.Pelzek,
and
B.F.Volkman
(2005).
The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin.
|
| |
Protein Sci,
14,
1071-1081.
|
 |
|
|
|
|
 |
D.A.Davis,
K.E.Singer,
M.De La Luz Sierra,
M.Narazaki,
F.Yang,
H.M.Fales,
R.Yarchoan,
and
G.Tosato
(2005).
Identification of carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-1alpha in the circulation.
|
| |
Blood,
105,
4561-4568.
|
 |
|
|
|
|
 |
F.Vianello,
I.T.Olszak,
and
M.C.Poznansky
(2005).
Fugetaxis: active movement of leukocytes away from a chemokinetic agent.
|
| |
J Mol Med,
83,
752-763.
|
 |
|
|
|
|
 |
J.Y.Springael,
E.Urizar,
and
M.Parmentier
(2005).
Dimerization of chemokine receptors and its functional consequences.
|
| |
Cytokine Growth Factor Rev,
16,
611-623.
|
 |
|
|
|
|
 |
K.Balabanian,
B.Lagane,
S.Infantino,
K.Y.Chow,
J.Harriague,
B.Moepps,
F.Arenzana-Seisdedos,
M.Thelen,
and
F.Bachelerie
(2005).
The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes.
|
| |
J Biol Chem,
280,
35760-35766.
|
 |
|
|
|
|
 |
O.Hartley,
P.J.Klasse,
Q.J.Sattentau,
and
J.P.Moore
(2005).
V3: HIV's switch-hitter.
|
| |
AIDS Res Hum Retroviruses,
21,
171-189.
|
 |
|
|
|
|
 |
O.K.Baryshnikova,
J.K.Rainey,
and
B.D.Sykes
(2005).
Nuclear magnetic resonance studies of CXC chemokine receptor 4 allosteric peptide agonists in solution.
|
| |
J Pept Res,
66,
12-21.
|
 |
|
|
|
|
 |
P.Li,
G.E.Garcia,
Y.Xia,
W.Wu,
C.Gersch,
P.W.Park,
L.Truong,
C.B.Wilson,
R.Johnson,
and
L.Feng
(2005).
Blocking of monocyte chemoattractant protein-1 during tubulointerstitial nephritis resulted in delayed neutrophil clearance.
|
| |
Am J Pathol,
167,
637-649.
|
 |
|
|
|
|
 |
S.Sebastiani,
G.Danelon,
B.Gerber,
and
M.Uguccioni
(2005).
CCL22-induced responses are powerfully enhanced by synergy inducing chemokines via CCR4: evidence for the involvement of first beta-strand of chemokine.
|
| |
Eur J Immunol,
35,
746-756.
|
 |
|
|
|
|
 |
S.Tian,
W.T.Choi,
D.Liu,
J.Pesavento,
Y.Wang,
J.An,
J.G.Sodroski,
and
Z.Huang
(2005).
Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1alpha on CXCR4 transmembrane helical domains.
|
| |
J Virol,
79,
12667-12673.
|
 |
|
|
|
|
 |
J.Van Damme,
S.Struyf,
and
G.Opdenakker
(2004).
Chemokine-protease interactions in cancer.
|
| |
Semin Cancer Biol,
14,
201-208.
|
 |
|
|
|
|
 |
K.Princen,
S.Hatse,
K.Vermeire,
S.Aquaro,
E.De Clercq,
L.O.Gerlach,
M.Rosenkilde,
T.W.Schwartz,
R.Skerlj,
G.Bridger,
and
D.Schols
(2004).
Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist.
|
| |
J Virol,
78,
12996-13006.
|
 |
|
|
|
|
 |
L.Rajagopalan,
and
K.Rajarathnam
(2004).
Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain.
|
| |
J Biol Chem,
279,
30000-30008.
|
 |
|
|
|
|
 |
M.B.Huang,
L.L.Jin,
C.O.James,
M.Khan,
M.D.Powell,
and
V.C.Bond
(2004).
Characterization of Nef-CXCR4 interactions important for apoptosis induction.
|
| |
J Virol,
78,
11084-11096.
|
 |
|
|
|
|
 |
R.Sadir,
A.Imberty,
F.Baleux,
and
H.Lortat-Jacob
(2004).
Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV.
|
| |
J Biol Chem,
279,
43854-43860.
|
 |
|
|
|
|
 |
S.E.Escher,
U.Forssmann,
A.Frimpong-Boateng,
K.Adermann,
J.Vakili,
H.Sticht,
and
M.Detheux
(2004).
Functional analysis of chemically synthesized derivatives of the human CC chemokine CCL15/HCC-2, a high affinity CCR1 ligand.
|
| |
J Pept Res,
63,
36-47.
|
 |
|
|
|
|
 |
T.R.Ott,
A.Pahuja,
S.A.Nickolls,
D.G.Alleva,
and
R.S.Struthers
(2004).
Identification of CC chemokine receptor 7 residues important for receptor activation.
|
| |
J Biol Chem,
279,
42383-42392.
|
 |
|
|
|
|
 |
A.Sachpatzidis,
B.K.Benton,
J.P.Manfredi,
H.Wang,
A.Hamilton,
H.G.Dohlman,
and
E.Lolis
(2003).
Identification of allosteric peptide agonists of CXCR4.
|
| |
J Biol Chem,
278,
896-907.
|
 |
|
|
|
|
 |
C.Blanpain,
B.J.Doranz,
A.Bondue,
C.Govaerts,
A.De Leener,
G.Vassart,
R.W.Doms,
A.Proudfoot,
and
M.Parmentier
(2003).
The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle.
|
| |
J Biol Chem,
278,
5179-5187.
|
 |
|
|
|
|
 |
G.J.Babcock,
M.Farzan,
and
J.Sodroski
(2003).
Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor.
|
| |
J Biol Chem,
278,
3378-3385.
|
 |
|
|
|
|
 |
I.Clark-Lewis,
I.Mattioli,
J.H.Gong,
and
P.Loetscher
(2003).
Structure-function relationship between the human chemokine receptor CXCR3 and its ligands.
|
| |
J Biol Chem,
278,
289-295.
|
 |
|
|
|
|
 |
K.L.Mayer,
and
M.J.Stone
(2003).
Backbone dynamics of the CC-chemokine eotaxin-2 and comparison among the eotaxin group chemokines.
|
| |
Proteins,
50,
184-191.
|
 |
|
|
|
|
 |
R.Minisini,
C.Tulone,
A.Lüske,
D.Michel,
T.Mertens,
P.Gierschik,
and
B.Moepps
(2003).
Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28.
|
| |
J Virol,
77,
4489-4501.
|
 |
|
|
|
|
 |
X.Huang,
J.Shen,
M.Cui,
L.Shen,
X.Luo,
K.Ling,
G.Pei,
H.Jiang,
and
K.Chen
(2003).
Molecular dynamics simulations on SDF-1alpha: binding with CXCR4 receptor.
|
| |
Biophys J,
84,
171-184.
|
 |
|
|
|
|
 |
A.Valenzuela-Fernández,
T.Planchenault,
F.Baleux,
I.Staropoli,
K.Le-Barillec,
D.Leduc,
T.Delaunay,
F.Lazarini,
J.L.Virelizier,
M.Chignard,
D.Pidard,
and
F.Arenzana-Seisdedos
(2002).
Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4.
|
| |
J Biol Chem,
277,
15677-15689.
|
 |
|
|
|
|
 |
D.M.Hoover,
C.Boulegue,
D.Yang,
J.J.Oppenheim,
K.Tucker,
W.Lu,
and
J.Lubkowski
(2002).
The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins.
|
| |
J Biol Chem,
277,
37647-37654.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.J.Fernandez,
and
E.Lolis
(2002).
Structure, function, and inhibition of chemokines.
|
| |
Annu Rev Pharmacol Toxicol,
42,
469-499.
|
 |
|
|
|
|
 |
E.S.KuloÄŸlu,
D.R.McCaslin,
J.L.Markley,
and
B.F.Volkman
(2002).
Structural rearrangement of human lymphotactin, a C chemokine, under physiological solution conditions.
|
| |
J Biol Chem,
277,
17863-17870.
|
 |
|
|
|
|
 |
H.Lortat-Jacob,
A.Grosdidier,
and
A.Imberty
(2002).
Structural diversity of heparan sulfate binding domains in chemokines.
|
| |
Proc Natl Acad Sci U S A,
99,
1229-1234.
|
 |
|
|
|
|
 |
K.Suetomi,
D.Rojo,
and
J.Navarro
(2002).
Identification of a signal transduction switch in the chemokine receptor CXCR1.
|
| |
J Biol Chem,
277,
31563-31566.
|
 |
|
|
|
|
 |
N.Zhou,
Z.Luo,
J.Luo,
X.Fan,
M.Cayabyab,
M.Hiraoka,
D.Liu,
X.Han,
J.Pesavento,
C.Z.Dong,
Y.Wang,
J.An,
H.Kaji,
J.G.Sodroski,
and
Z.Huang
(2002).
Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines.
|
| |
J Biol Chem,
277,
17476-17485.
|
 |
|
|
|
|
 |
P.H.Carter
(2002).
Chemokine receptor antagonism as an approach to anti-inflammatory therapy: 'just right' or plain wrong?
|
| |
Curr Opin Chem Biol,
6,
510-525.
|
 |
|
|
|
|
 |
T.Miyakawa,
K.Obaru,
K.Maeda,
S.Harada,
and
H.Mitsuya
(2002).
Identification of amino acid residues critical for LD78beta, a variant of human macrophage inflammatory protein-1alpha, binding to CCR5 and inhibition of R5 human immunodeficiency virus type 1 replication.
|
| |
J Biol Chem,
277,
4649-4655.
|
 |
|
|
|
|
 |
V.Grabovsky,
O.Dwir,
and
R.Alon
(2002).
Endothelial chemokines destabilize L-selectin-mediated lymphocyte rolling without inducing selectin shedding.
|
| |
J Biol Chem,
277,
20640-20650.
|
 |
|
|
|
|
 |
A.Yonezawa,
T.Hori,
A.Takaori-Kondo,
R.Morita,
and
T.Uchiyama
(2001).
Replacement of the V3 region of gp120 with SDF-1 preserves the infectivity of T-cell line-tropic human immunodeficiency virus type 1.
|
| |
J Virol,
75,
4258-4267.
|
 |
|
|
|
|
 |
A.Zlatopolskiy,
and
J.Laurence
(2001).
'Reverse gear' cellular movement mediated by chemokines.
|
| |
Immunol Cell Biol,
79,
340-344.
|
 |
|
|
|
|
 |
B.T.Seet,
R.Singh,
C.Paavola,
E.K.Lau,
T.M.Handel,
and
G.McFadden
(2001).
Molecular determinants for CC-chemokine recognition by a poxvirus CC-chemokine inhibitor.
|
| |
Proc Natl Acad Sci U S A,
98,
9008-9013.
|
 |
|
|
|
|
 |
C.Baysal,
and
A.R.Atilgan
(2001).
Elucidating the structural mechanisms for biological activity of the chemokine family.
|
| |
Proteins,
43,
150-160.
|
 |
|
|
|
|
 |
C.Baysal,
and
A.R.Atilgan
(2001).
Coordination topology and stability for the native and binding conformers of chymotrypsin inhibitor 2.
|
| |
Proteins,
45,
62-70.
|
 |
|
|
|
|
 |
D.M.Eckert,
and
P.S.Kim
(2001).
Mechanisms of viral membrane fusion and its inhibition.
|
| |
Annu Rev Biochem,
70,
777-810.
|
 |
|
|
|
|
 |
G.A.McQuibban,
G.S.Butler,
J.H.Gong,
L.Bendall,
C.Power,
I.Clark-Lewis,
and
C.M.Overall
(2001).
Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1.
|
| |
J Biol Chem,
276,
43503-43508.
|
 |
|
|
|
|
 |
I.S.Zeelenberg,
L.Ruuls-Van Stalle,
and
E.Roos
(2001).
Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma.
|
| |
J Clin Invest,
108,
269-277.
|
 |
|
|
|
|
 |
M.B.Delgado,
I.Clark-Lewis,
P.Loetscher,
H.Langen,
M.Thelen,
M.Baggiolini,
and
M.Wolf
(2001).
Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes.
|
| |
Eur J Immunol,
31,
699-707.
|
 |
|
|
|
|
 |
M.Ikegawa,
J.Yuan,
K.Matsumoto,
S.Herrmann,
A.Iwamoto,
T.Nakamura,
S.Matsushita,
T.Kimura,
T.Honjo,
and
K.Tashiro
(2001).
Elevated plasma stromal cell-derived factor 1 protein level in the progression of HIV type 1 infection/AIDS.
|
| |
AIDS Res Hum Retroviruses,
17,
587-595.
|
 |
|
|
|
|
 |
N.Zhou,
Z.Luo,
J.Luo,
D.Liu,
J.W.Hall,
R.J.Pomerantz,
and
Z.Huang
(2001).
Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies.
|
| |
J Biol Chem,
276,
42826-42833.
|
 |
|
|
|
|
 |
T.S.Stantchev,
and
C.C.Broder
(2001).
Human immunodeficiency virus type-1 and chemokines: beyond competition for common cellular receptors.
|
| |
Cytokine Growth Factor Rev,
12,
219-243.
|
 |
|
|
|
|
 |
B.Moepps,
M.Braun,
K.Knöpfle,
K.Dillinger,
W.Knöchel,
and
P.Gierschik
(2000).
Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo.
|
| |
Eur J Immunol,
30,
2924-2934.
|
 |
|
|
|
|
 |
E.J.Fernandez,
J.Wilken,
D.A.Thompson,
S.C.Peiper,
and
E.Lolis
(2000).
Comparison of the structure of vMIP-II with eotaxin-1, RANTES, and MCP-3 suggests a unique mechanism for CCR3 activation.
|
| |
Biochemistry,
39,
12837-12844.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Lazarini,
P.Casanova,
T.N.Tham,
E.De Clercq,
F.Arenzana-Seisdedos,
F.Baleux,
and
M.Dubois-Dalcq
(2000).
Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes.
|
| |
Eur J Neurosci,
12,
117-125.
|
 |
|
|
|
|
 |
J.S.Laurence,
C.Blanpain,
J.W.Burgner,
M.Parmentier,
and
P.J.LiWang
(2000).
CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding.
|
| |
Biochemistry,
39,
3401-3409.
|
 |
|
|
|
|
 |
K.L.Mayer,
and
M.J.Stone
(2000).
NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2.
|
| |
Biochemistry,
39,
8382-8395.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Zhou,
Z.Luo,
J.Luo,
J.W.Hall,
and
Z.Huang
(2000).
A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II.
|
| |
Biochemistry,
39,
3782-3787.
|
 |
|
|
|
|
 |
S.Polo,
V.Nardese,
C.De Santis,
C.Arcelloni,
R.Paroni,
F.Sironi,
A.Verani,
M.Rizzi,
M.Bolognesi,
and
P.Lusso
(2000).
Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal region: dissociation from CCR5 activation.
|
| |
Eur J Immunol,
30,
3190-3198.
|
 |
|
|
|
|
 |
Y.Ohnishi,
T.Senda,
N.Nandhagopal,
K.Sugimoto,
T.Shioda,
Y.Nagal,
and
Y.Mitsui
(2000).
Crystal structure of recombinant native SDF-1alpha with additional mutagenesis studies: an attempt at a more comprehensive interpretation of accumulated structure-activity relationship data.
|
| |
J Interferon Cytokine Res,
20,
691-700.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Huang
(2000).
Structural chemistry and therapeutic intervention of protein-protein interactions in immune response, human immunodeficiency virus entry, and apoptosis.
|
| |
Pharmacol Ther,
86,
201-215.
|
 |
|
|
|
|
 |
A.Amara,
O.Lorthioir,
A.Valenzuela,
A.Magerus,
M.Thelen,
M.Montes,
J.L.Virelizier,
M.Delepierre,
F.Baleux,
H.Lortat-Jacob,
and
F.Arenzana-Seisdedos
(1999).
Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine.
|
| |
J Biol Chem,
274,
23916-23925.
|
 |
|
|
|
|
 |
A.C.LiWang,
J.J.Cao,
H.Zheng,
Z.Lu,
S.C.Peiper,
and
P.J.LiWang
(1999).
Dynamics study on the anti-human immunodeficiency virus chemokine viral macrophage-inflammatory protein-II (VMIP-II) reveals a fully monomeric protein.
|
| |
Biochemistry,
38,
442-453.
|
 |
|
|
|
|
 |
A.C.Liwang,
Z.X.Wang,
Y.Sun,
S.C.Peiper,
and
P.J.Liwang
(1999).
The solution structure of the anti-HIV chemokine vMIP-II.
|
| |
Protein Sci,
8,
2270-2280.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Coulomb-L'Hermin,
A.Amara,
C.Schiff,
I.Durand-Gasselin,
A.Foussat,
T.Delaunay,
G.Chaouat,
F.Capron,
N.Ledee,
P.Galanaud,
F.Arenzana-Seisdedos,
and
D.Emilie
(1999).
Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.
|
| |
Proc Natl Acad Sci U S A,
96,
8585-8590.
|
 |
|
|
|
|
 |
B.J.Doranz,
M.J.Orsini,
J.D.Turner,
T.L.Hoffman,
J.F.Berson,
J.A.Hoxie,
S.C.Peiper,
L.F.Brass,
and
R.W.Doms
(1999).
Identification of CXCR4 domains that support coreceptor and chemokine receptor functions.
|
| |
J Virol,
73,
2752-2761.
|
 |
|
|
|
|
 |
E.A.Berger,
P.M.Murphy,
and
J.M.Farber
(1999).
Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.
|
| |
Annu Rev Immunol,
17,
657-700.
|
 |
|
|
|
|
 |
M.P.Crump,
L.Spyracopoulos,
P.Lavigne,
K.S.Kim,
I.Clark-lewis,
and
B.D.Sykes
(1999).
Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding.
|
| |
Protein Sci,
8,
2041-2054.
|
 |
|
|
|
|
 |
O.O.Yang,
S.L.Swanberg,
Z.Lu,
M.Dziejman,
J.McCoy,
A.D.Luster,
B.D.Walker,
and
S.H.Herrmann
(1999).
Enhanced inhibition of human immunodeficiency virus type 1 by Met-stromal-derived factor 1beta correlates with down-modulation of CXCR4.
|
| |
J Virol,
73,
4582-4589.
|
 |
|
|
|
|
 |
P.J.Klasse,
M.M.Rosenkilde,
N.Signoret,
A.Pelchen-Matthews,
T.W.Schwartz,
and
M.Marsh
(1999).
CD4-Chemokine receptor hybrids in human immunodeficiency virus type 1 infection.
|
| |
J Virol,
73,
7453-7466.
|
 |
|
|
|
|
 |
P.Proost,
S.Struyf,
D.Schols,
G.Opdenakker,
S.Sozzani,
P.Allavena,
A.Mantovani,
K.Augustyns,
G.Bal,
A.Haemers,
A.M.Lambeir,
S.Scharpé,
J.Van Damme,
and
I.De Meester
(1999).
Truncation of macrophage-derived chemokine by CD26/ dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction.
|
| |
J Biol Chem,
274,
3988-3993.
|
 |
|
|
|
|
 |
R.J.Nibbs,
J.Yang,
N.R.Landau,
J.H.Mao,
and
G.J.Graham
(1999).
LD78beta, a non-allelic variant of human MIP-1alpha (LD78alpha), has enhanced receptor interactions and potent HIV suppressive activity.
|
| |
J Biol Chem,
274,
17478-17483.
|
 |
|
|
|
|
 |
V.Maréchal,
F.Arenzana-Seisdedos,
J.M.Heard,
and
O.Schwartz
(1999).
Opposite effects of SDF-1 on human immunodeficiency virus type 1 replication.
|
| |
J Virol,
73,
3608-3615.
|
 |
|
|
|
|
 |
C.Dealwis,
E.J.Fernandez,
D.A.Thompson,
R.J.Simon,
M.A.Siani,
and
E.Lolis
(1998).
Crystal structure of chemically synthesized [N33A] stromal cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor.
|
| |
Proc Natl Acad Sci U S A,
95,
6941-6946.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Missé,
M.Cerutti,
I.Schmidt,
A.Jansen,
G.Devauchelle,
F.Jansen,
and
F.Veas
(1998).
Dissociation of the CD4 and CXCR4 binding properties of human immunodeficiency virus type 1 gp120 by deletion of the first putative alpha-helical conserved structure.
|
| |
J Virol,
72,
7280-7288.
|
 |
|
|
|
|
 |
J.S.Laurence,
A.C.LiWang,
and
P.J.LiWang
(1998).
Effect of N-terminal truncation and solution conditions on chemokine dimer stability: nuclear magnetic resonance structural analysis of macrophage inflammatory protein 1 beta mutants.
|
| |
Biochemistry,
37,
9346-9354.
|
 |
|
|
|
|
 |
J.Wilken,
and
S.B.Kent
(1998).
Chemical protein synthesis.
|
| |
Curr Opin Biotechnol,
9,
412-426.
|
 |
|
|
|
|
 |
M.P.Crump,
K.Rajarathnam,
K.S.Kim,
I.Clark-Lewis,
and
B.D.Sykes
(1998).
Solution structure of eotaxin, a chemokine that selectively recruits eosinophils in allergic inflammation.
|
| |
J Biol Chem,
273,
22471-22479.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Heveker,
M.Montes,
L.Germeroth,
A.Amara,
A.Trautmann,
M.Alizon,
and
J.Schneider-Mergener
(1998).
Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides.
|
| |
Curr Biol,
8,
369-376.
|
 |
|
|
|
|
 |
P.Loetscher,
J.H.Gong,
B.Dewald,
M.Baggiolini,
and
I.Clark-Lewis
(1998).
N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities.
|
| |
J Biol Chem,
273,
22279-22283.
|
 |
|
|
|
|
 |
S.Sawada,
K.Gowrishankar,
R.Kitamura,
M.Suzuki,
G.Suzuki,
S.Tahara,
and
A.Koito
(1998).
Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors.
|
| |
J Exp Med,
187,
1439-1449.
|
 |
|
|
|
|
 |
T.Shioda,
H.Kato,
Y.Ohnishi,
K.Tashiro,
M.Ikegawa,
E.E.Nakayama,
H.Hu,
A.Kato,
Y.Sakai,
H.Liu,
T.Honjo,
A.Nomoto,
A.Iwamoto,
C.Morimoto,
and
Y.Nagai
(1998).
Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage.
|
| |
Proc Natl Acad Sci U S A,
95,
6331-6336.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |