spacer
spacer

PDBsum entry 1s9f

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Transferase/DNA PDB id
1s9f

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
341 a.a. *
DNA/RNA
Ligands
DDY ×4
Metals
_CA ×4
_MG ×4
Waters ×1129
* Residue conservation analysis
PDB id:
1s9f
Name: Transferase/DNA
Title: Dpo with at matched
Structure: 5'-d( Gp Gp Gp Gp Gp Ap Ap Gp Gp Ap Cp Tp A)-3'. Chain: e, f, g, h. Engineered: yes. 5'-d( T Tp Cp Ap Gp Tp Ap Gp Tp Cp Cp Tp Tp Cp Cp Cp Cp C)- 3'. Chain: i, j, k, l. Engineered: yes. DNA polymerase iv. Chain: a, b, c, d.
Source: Synthetic: yes. Sulfolobus solfataricus. Organism_taxid: 2287. Gene: dbh, dpo4, sso2448. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Trimer (from PQS)
Resolution:
2.00Å     R-factor:   0.205     R-free:   0.239
Authors: J.Trincao,R.E.Johnson,W.T.Wolfle,C.R.Escalante,S.Prakash,L.Prakash, A.K.Aggarwal
Key ref:
J.Trincao et al. (2004). Dpo4 is hindered in extending a G.T mismatch by a reverse wobble. Nat Struct Mol Biol, 11, 457-462. PubMed id: 15077104 DOI: 10.1038/nsmb755
Date:
04-Feb-04     Release date:   15-Feb-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q97W02  (DPO4_SULSO) -  DNA polymerase IV from Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
Seq:
Struc:
352 a.a.
341 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-G-G-G-G-A-A-G-G-A-C-T-A 13 bases
  T-C-A-G-T-A-G-T-C-C-T-T-C-C-C-C-C 17 bases
  G-G-G-G-G-A-A-G-G-A-C-T-A 13 bases
  T-C-A-G-T-A-G-T-C-C-T-T-C-C-C-C-C 17 bases
  G-G-G-G-G-A-A-G-G-A-C-T-A 13 bases
  T-C-A-G-T-A-G-T-C-C-T-T-C-C-C-C-C 17 bases
  G-G-G-G-G-A-A-G-G-A-C-T-A 13 bases
  T-C-A-G-T-A-G-T-C-C-T-T-C-C-C-C-C 17 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/nsmb755 Nat Struct Mol Biol 11:457-462 (2004)
PubMed id: 15077104  
 
 
Dpo4 is hindered in extending a G.T mismatch by a reverse wobble.
J.Trincao, R.E.Johnson, W.T.Wolfle, C.R.Escalante, S.Prakash, L.Prakash, A.K.Aggarwal.
 
  ABSTRACT  
 
The ability or inability of a DNA polymerase to extend a mispair directly affects the establishment of genomic mutations. We report here kinetic analyses of the ability of Dpo4, a Y-family polymerase from Sulfolobus solfataricus, to extend from all mispairs opposite a template G or T. Dpo4 is equally inefficient at extending these mispairs, which include, surprisingly, a G.T mispair expected to conform closely to Watson-Crick geometry. To elucidate the basis of this, we solved the structure of Dpo4 bound to G.T-mispaired primer template in the presence of an incoming nucleotide. As a control, we also determined the structure of Dpo4 bound to a matched A-T base pair at the primer terminus. The structures offer a basis for the low efficiency of Dpo4 in extending a G.T mispair: a reverse wobble that deflects the primer 3'-OH away from the incoming nucleotide.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Dpo4-catalyzed extension of a G T primer -terminal mispair. (a) The incorporation of dGTP opposite C following an A-T primer -terminal base pair (left) is 500-fold more efficient when compared to the incorporation of dGTP opposite C following a G T primer -terminal mispair (right). The incorporation of dGTP (200 M) was examined for the indicated time periods for each substrate. The enzyme concentrations for the A-T base-paired and the G T mispaired primer termini were 0.2 nM and 1.2 nM, respectively. (b) The rate of dGTP incorporation opposite a template C following an A-T primer -terminal base pair (left) or following a G T primer -terminal mispair (right) was graphed as a function of dGTP concentration. The solid line represents the best fit to the Michaelis-Menten equation. The steady-state parameters, k [cat] and K [m], are listed in Table 1.
Figure 2.
Figure 2. Dpo4 in complex with matched and mismatched primer termini. (a) An overall view of different Dpo4 -DNA complexes: the type I structure determined by Yang and colleagues, and the structures reported here of Dpo4 bound to a mismatched (G T) and the matched (A-T) primer template. Dpo4 in each complex is colored by palm (blue), fingers (yellow) and thumb (orange) domains, as well as PAD (green). The terminal base pair of the DNA in each complex is red. (b) Close-up view of the template-primer terminus in each complex, highlighting the terminal base pair (red), the incoming nucleotide, the active site residues (Asp7, Asp105 and Glu106) coordinating a metal ion (yellow ball, refined as Ca^2+), residues (Tyr48, Arg51 and Lys159) bonding to the di- or triphosphate moiety of the incoming nucleotide, as well as residues (Val32, Ala42 and Gly58) from the fingers domain that impinge on the templating base. Also in red is the C3' atom at the primer terminus. The figure was generated with MolMol32 and PovRay (http://www.povray.org). (c) 2F [o] - F [c] electron density for a portion of the primer and the incoming nucleotide in the G T complex. The map was computed with the terminal guanine (ddG) and the incoming nucleotide (ddCTP) omitted (and followed by simulated annealing). The terminal guanine inverts to form a reverse wobble. Also in red is the hypothetical position for the guanine in a standard wobble configuration (which is completely out of density).
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2004, 11, 457-462) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20123134 J.D.Pata (2010).
Structural diversity of the Y-family DNA polymerases.
  Biochim Biophys Acta, 1804, 1124-1135.  
19059910 H.Zhang, R.L.Eoff, I.D.Kozekov, C.J.Rizzo, M.Egli, and F.P.Guengerich (2009).
Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N2-Alkylguanine Adducts.
  J Biol Chem, 284, 3563-3576.
PDB codes: 2v4s 2v4t 2w8k 2w8l
19542237 H.Zhang, R.L.Eoff, I.D.Kozekov, C.J.Rizzo, M.Egli, and F.P.Guengerich (2009).
Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes.
  J Biol Chem, 284, 17687-17699.
PDB codes: 2w9a 2w9b 2w9c
19607842 H.Zhang, U.Bren, I.D.Kozekov, C.J.Rizzo, D.F.Stec, and F.P.Guengerich (2009).
Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases.
  J Mol Biol, 392, 251-269.  
19446528 O.Rechkoblit, L.Malinina, Y.Cheng, N.E.Geacintov, S.Broyde, and D.J.Patel (2009).
Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases.
  Structure, 17, 725-736.
PDB codes: 3gii 3gij 3gik 3gil 3gim
19364137 P.Xu, L.Oum, Y.C.Lee, N.E.Geacintov, and S.Broyde (2009).
Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase.
  Biochemistry, 48, 4677-4690.  
19604477 R.Jain, D.T.Nair, R.E.Johnson, L.Prakash, S.Prakash, and A.K.Aggarwal (2009).
Replication across template T/U by human DNA polymerase-iota.
  Structure, 17, 974-980.
PDB codes: 3h40 3h4b 3h4d
18385153 K.H.Tang, M.Niebuhr, C.S.Tung, H.C.Chan, C.C.Chou, and M.D.Tsai (2008).
Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways.
  Nucleic Acids Res, 36, 2948-2957.
PDB code: 2van
18616289 L.DeCarlo, A.S.Gowda, Z.Suo, and T.E.Spratt (2008).
Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
  Biochemistry, 47, 8157-8164.  
18717589 M.P.Roettger, M.Bakhtina, and M.D.Tsai (2008).
Mismatched and matched dNTP incorporation by DNA polymerase beta proceed via analogous kinetic pathways.
  Biochemistry, 47, 9718-9727.  
18407502 S.Broyde, L.Wang, O.Rechkoblit, N.E.Geacintov, and D.J.Patel (2008).
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases.
  Trends Biochem Sci, 33, 209-219.  
17951245 A.Irimia, R.L.Eoff, P.S.Pallan, F.P.Guengerich, and M.Egli (2007).
Structure and activity of Y-class DNA polymerase DPO4 from Sulfolobus solfataricus with templates containing the hydrophobic thymine analog 2,4-difluorotoluene.
  J Biol Chem, 282, 36421-36433.
PDB codes: 2v9w 2va2 2va3
17095011 K.A.Fiala, J.A.Brown, H.Ling, A.K.Kshetry, J.Zhang, J.S.Taylor, W.Yang, and Z.Suo (2007).
Mechanism of template-independent nucleotide incorporation catalyzed by a template-dependent DNA polymerase.
  J Mol Biol, 365, 590-602.
PDB code: 2imw
17317631 S.Lone, S.A.Townson, S.N.Uljon, R.E.Johnson, A.Brahma, D.T.Nair, S.Prakash, L.Prakash, and A.K.Aggarwal (2007).
Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass.
  Mol Cell, 25, 601-614.  
16820532 L.Zhang, O.Rechkoblit, L.Wang, D.J.Patel, R.Shapiro, and S.Broyde (2006).
Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies.
  Nucleic Acids Res, 34, 3326-3337.  
16379496 O.Rechkoblit, L.Malinina, Y.Cheng, V.Kuryavyi, S.Broyde, N.E.Geacintov, and D.J.Patel (2006).
Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.
  PLoS Biol, 4, e11.
PDB codes: 2asd 2asj 2asl 2atl 2au0
16107880 A.Vaisman, H.Ling, R.Woodgate, and W.Yang (2005).
Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.
  EMBO J, 24, 2957-2967.
PDB codes: 2ago 2agp 2agq
15965231 H.Zang, A.K.Goodenough, J.Y.Choi, A.Irimia, L.V.Loukachevitch, I.D.Kozekov, K.C.Angel, C.J.Rizzo, M.Egli, and F.P.Guengerich (2005).
DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine.
  J Biol Chem, 280, 29750-29764.
PDB codes: 2bq3 2bqr 2bqu 2br0
16116089 R.E.Johnson, L.Prakash, and S.Prakash (2005).
Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta.
  Proc Natl Acad Sci U S A, 102, 12359-12364.  
15952890 S.Prakash, R.E.Johnson, and L.Prakash (2005).
Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
  Annu Rev Biochem, 74, 317-353.  
16084394 V.K.Batra, W.A.Beard, D.D.Shock, L.C.Pedersen, and S.H.Wilson (2005).
Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate.
  Structure, 13, 1225-1233.
PDB codes: 1zjm 1zjn
15296733 S.N.Uljon, R.E.Johnson, T.A.Edwards, S.Prakash, L.Prakash, and A.K.Aggarwal (2004).
Crystal structure of the catalytic core of human DNA polymerase kappa.
  Structure, 12, 1395-1404.
PDB code: 1t94
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer