spacer
spacer

PDBsum entry 1oaf

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
1oaf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
250 a.a. *
Ligands
HEM
ASC
Metals
_NA
Waters ×505
* Residue conservation analysis
PDB id:
1oaf
Name: Oxidoreductase
Title: Ascobate peroxidase from soybean cytosol in complex with ascorbate
Structure: Ascorbate peroxidase. Chain: a. Engineered: yes
Source: Glycine max. Soybean. Organism_taxid: 3847. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: n-terminal 6-his tag
Resolution:
1.40Å     R-factor:   0.163     R-free:   0.196
Authors: K.H.Sharp,E.L.Raven,P.C.E.Moody
Key ref:
K.H.Sharp et al. (2003). Crystal structure of the ascorbate peroxidase-ascorbate complex. Nat Struct Biol, 10, 303-307. PubMed id: 12640445 DOI: 10.1038/nsb913
Date:
13-Jan-03     Release date:   20-Mar-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q43758  (Q43758_SOYBN) -  L-ascorbate peroxidase from Glycine max
Seq:
Struc:
250 a.a.
250 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.11.1.11  - L-ascorbate peroxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-ascorbate + H2O2 = L-dehydroascorbate + 2 H2O
L-ascorbate
+
H2O2
Bound ligand (Het Group name = ASC)
corresponds exactly
= L-dehydroascorbate
+ 2 × H2O
      Cofactor: Heme
Heme
Bound ligand (Het Group name = HEM) matches with 95.45% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsb913 Nat Struct Biol 10:303-307 (2003)
PubMed id: 12640445  
 
 
Crystal structure of the ascorbate peroxidase-ascorbate complex.
K.H.Sharp, M.Mewies, P.C.Moody, E.L.Raven.
 
  ABSTRACT  
 
Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse--most peroxidases oxidize small organic substrates, but there are prominent exceptions--and there is a notable absence of structural information for a representative peroxidase-substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase-ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. The active site of rsAPX32, 33. The key residues are labeled, and water molecules are shown as red spheres. Hydrogen bonds are indicated by green dotted lines.
Figure 2.
Figure 2. The ascorbate-binding site. a, Stereo representation of the overall structure of the rsAPX -ascorbate complex34, showing the heme, the proximal and distal histidine residues, the coordinated water molecule and the bound ascorbate. The regions 20 -35 and 179 -181 (shown in Fig. 3) are highlighted in magenta. b, The structure of L-ascorbic acid, showing the L configuration at C^5. The pK[a]s of the 2-OH and 3-OH groups are 11.3 and 4.0, respectively35. c, The structure of rsAPX showing the -meso and -meso positions of the heme and bound solvent in the ascorbate-binding site. d, Stereo view of the rsAPX -ascorbate complex, showing refined electron density (green) and the binding of the ascorbate. Hydrogen bonds are indicated (dotted lines)32, 33.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 303-307) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19907057 A.K.Singh, R.P.Kumar, N.Pandey, N.Singh, M.Sinha, A.Bhushan, P.Kaur, S.Sharma, and T.P.Singh (2010).
Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution.
  J Biol Chem, 285, 1569-1576.
PDB codes: 3gc1 3i6n
20642725 J.K.Weng, and C.Chapple (2010).
The origin and evolution of lignin biosynthesis.
  New Phytol, 187, 273-285.  
20015051 T.Ishikawa, N.Tajima, H.Nishikawa, Y.Gao, M.Rapolu, H.Shibata, Y.Sawa, and S.Shigeoka (2010).
Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization.
  Biochem J, 426, 125-134.  
19465478 A.K.Singh, N.Singh, M.Sinha, A.Bhushan, P.Kaur, A.Srinivasan, S.Sharma, and T.P.Singh (2009).
Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid.
  J Biol Chem, 284, 20311-20318.
PDB code: 3gcl
19167310 A.K.Singh, N.Singh, S.Sharma, K.Shin, M.Takase, P.Kaur, A.Srinivasan, and T.P.Singh (2009).
Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution.
  Biophys J, 96, 646-654.
PDB code: 3bxi
18987391 F.J.Ruiz-Dueñas, M.Morales, E.García, Y.Miki, M.J.Martínez, and A.T.Martínez (2009).
Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.
  J Exp Bot, 60, 441-452.  
18056997 C.Metcalfe, I.K.Macdonald, E.J.Murphy, K.A.Brown, E.L.Raven, and P.C.Moody (2008).
The tuberculosis prodrug isoniazid bound to activating peroxidases.
  J Biol Chem, 283, 6193-6200.
PDB codes: 2v23 2v2e 2vcf 2vcn 2vcs
17957765 E.Stjernschantz, B.M.van Vugt-Lussenburg, A.Bonifacio, S.B.de Beer, G.van der Zwan, C.Gooijer, J.N.Commandeur, N.P.Vermeulen, and C.Oostenbrink (2008).
Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3.
  Proteins, 71, 336-352.  
18026995 N.Najami, T.Janda, W.Barriah, G.Kayam, M.Tal, M.Guy, and M.Volokita (2008).
Ascorbate peroxidase gene family in tomato: its identification and characterization.
  Mol Genet Genomics, 279, 171-182.  
18167143 S.Kitajima, M.Kurioka, T.Yoshimoto, M.Shindo, K.Kanaori, K.Tajima, and K.Oda (2008).
A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase.
  FEBS J, 275, 470-480.  
18460785 T.Ishikawa, and S.Shigeoka (2008).
Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms.
  Biosci Biotechnol Biochem, 72, 1143-1154.  
18445553 V.Guallar, and F.Wallrapp (2008).
Mapping protein electron transfer pathways with QM/MM methods.
  J R Soc Interface, 5, S233-S239.  
17372351 K.Fukuyama, and T.Okada (2007).
Structures of cyanide, nitric oxide and hydroxylamine complexes of Arthromyces ramosusperoxidase at 100 K refined to 1.3 A resolution: coordination geometries of the ligands to the haem iron.
  Acta Crystallogr D Biol Crystallogr, 63, 472-477.
PDB codes: 2e39 2e3a 2e3b
17303078 L.Huang, and P.R.Ortiz de Montellano (2007).
Arthromyces ramosus peroxidase produces two chlorinating species.
  Biochem Biophys Res Commun, 355, 581-586.  
17534526 T.L.Poulos (2007).
The Janus nature of heme.
  Nat Prod Rep, 24, 504-510.  
17031543 E.Gelhaye, N.Navrot, I.K.Macdonald, N.Rouhier, E.L.Raven, and J.P.Jacquot (2006).
Ascorbate peroxidase-thioredoxin interaction.
  Photosynth Res, 89, 193-200.  
16788912 J.N.Harvey, C.M.Bathelt, and A.J.Mulholland (2006).
QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
  J Comput Chem, 27, 1352-1362.  
16817889 P.J.Linley, M.Landsberger, T.Kohchi, J.B.Cooper, and M.J.Terry (2006).
The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea.
  FEBS J, 273, 2594-2606.  
16762924 S.K.Badyal, M.G.Joyce, K.H.Sharp, H.E.Seward, M.Mewies, J.Basran, I.K.Macdonald, P.C.Moody, and E.L.Raven (2006).
Conformational mobility in the active site of a heme peroxidase.
  J Biol Chem, 281, 24512-24520.
PDB codes: 2ggn 2ghc 2ghd 2ghe 2ghh 2ghk
16234927 C.M.Bathelt, A.J.Mulholland, and J.N.Harvey (2005).
QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase.
  Dalton Trans, (), 3470-3476.  
16234921 D.J.Stuehr, C.C.Wei, Z.Wang, and R.Hille (2005).
Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
  Dalton Trans, (), 3427-3435.  
15599508 F.K.Teixeira, L.Menezes-Benavente, R.Margis, and M.Margis-Pinheiro (2004).
Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome.
  J Mol Evol, 59, 761-770.  
15291807 M.Zámocký (2004).
Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases.
  Eur J Biochem, 271, 3297-3309.  
15231844 R.Pierattelli, L.Banci, N.A.Eady, J.Bodiguel, J.N.Jones, P.C.Moody, E.L.Raven, B.Jamart-Grégoire, and K.A.Brown (2004).
Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases.
  J Biol Chem, 279, 39000-39009.  
15231843 T.Bertrand, N.A.Eady, J.N.Jones, Jesmin, J.M.Nagy, B.Jamart-Grégoire, E.L.Raven, and K.A.Brown (2004).
Crystal structure of Mycobacterium tuberculosis catalase-peroxidase.
  J Biol Chem, 279, 38991-38999.
PDB code: 1sj2
15489165 Z.Zhang, J.S.Ren, I.J.Clifton, and C.J.Schofield (2004).
Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme.
  Chem Biol, 11, 1383-1394.
PDB codes: 1w9y 1wa6
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer