spacer
spacer

PDBsum entry 4l2y

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Signaling protein/transferase/inhibitor PDB id
4l2y

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
991 a.a.
277 a.a.
Ligands
XXK
SO4 ×2
GOL
Waters ×17
PDB id:
4l2y
Name: Signaling protein/transferase/inhibitor
Title: Crystal structure of p110alpha complexed with nish2 of p85alpha and compound 9d
Structure: Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform. Chain: a. Synonym: pi3-kinase subunit alpha, pi3k-alpha, pi3kalpha, ptdins-3- kinase subunit alpha, phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kda catalytic subunit alpha, ptdins-3-kinase subunit p110-alpha, p110alpha, phosphoinositide-3-kinase catalytic alpha polypeptide, serine/threonine protein kinase pik3ca. Engineered: yes.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pik3ca. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Gene: grb1, pik3r1.
Resolution:
2.80Å     R-factor:   0.218     R-free:   0.271
Authors: J.Zhang,Y.L.Zhao,Y.Y.Chen,M.Huang,F.Jiang
Key ref: Y.Zhao et al. (2014). Crystal Structures of PI3Kα Complexed with PI103 and Its Derivatives: New Directions for Inhibitors Design. Acs Med Chem Lett, 5, 138-142. PubMed id: 24900786 DOI: 10.1021/ml400378e
Date:
05-Jun-13     Release date:   01-Jan-14    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P42336  (PK3CA_HUMAN) -  Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1068 a.a.
991 a.a.
Protein chain
Pfam   ArchSchema ?
P27986  (P85A_HUMAN) -  Phosphatidylinositol 3-kinase regulatory subunit alpha from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
724 a.a.
277 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chain A: E.C.2.7.11.1  - non-specific serine/threonine protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
2. L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
L-seryl-[protein]
+ ATP
= O-phospho-L-seryl-[protein]
+ ADP
+ H(+)
L-threonyl-[protein]
+ ATP
= O-phospho-L-threonyl-[protein]
+ ADP
+ H(+)
   Enzyme class 3: Chain A: E.C.2.7.1.137  - phosphatidylinositol 3-kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol) + ATP = a 1,2-diacyl- sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate) + ADP + H+
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol)
+ ATP
= 1,2-diacyl- sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)
+ ADP
+ H(+)
   Enzyme class 4: Chain A: E.C.2.7.1.153  - phosphatidylinositol-4,5-bisphosphate 3-kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5- trisphosphate) + ADP + H+
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate)
+ ATP
= 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5- trisphosphate)
+ ADP
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/ml400378e Acs Med Chem Lett 5:138-142 (2014)
PubMed id: 24900786  
 
 
Crystal Structures of PI3Kα Complexed with PI103 and Its Derivatives: New Directions for Inhibitors Design.
Y.Zhao, X.Zhang, Y.Chen, S.Lu, Y.Peng, X.Wang, C.Guo, A.Zhou, J.Zhang, Y.Luo, Q.Shen, J.Ding, L.Meng, J.Zhang.
 
  ABSTRACT  
 
The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays important roles in cell proliferation, growth, and survival. Hyperactivated PI3K is frequently found in a wide variety of human cancers, validating it as a promising target for cancer therapy. We determined the crystal structure of the human PI3Kα-PI103 complex to unravel molecular interactions. Based on the structure, substitution at the R1 position of the phenol portion of PI103 was demonstrated to improve binding affinity via forming a new H-bond with Lys802 at the bottom of the ATP catalytic site. Interestingly, the crystal structure of the PI3Kα-9d complex revealed that the flexibility of Lys802 can also induce additional space at the catalytic site for further modification. Thus, these crystal structures provide a molecular basis for the strong and specific interactions and demonstrate the important role of Lys802 in the design of novel PI3Kα inhibitors.
 

 

spacer

spacer